Compositional formations of $c$-length~3
Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 119-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Theta$ be a full modular lattice of the formation of finite groups and let $0_\Theta$ be zero of $\Theta$. We say that a $\Theta$-formation $\mathfrak F\ne 0_\Theta$ has the $\Theta$-length $l_\Theta(\mathfrak F)$ equal to $n$ if there exist $\Theta$-formations $$ \mathfrak F_0,\mathfrak F_1, \ldots,\mathfrak F_n $$ such that $\mathfrak F_n=\mathfrak F$, $\mathfrak F_0=0_\Theta$, and $\mathfrak F_{i-1}$ is a maximal $\Theta$-subformation of $\mathfrak F_i$, $i=1,\ldots,n$. In this paper, a complete description of the structure of composite formations of the $c$-length 3 is obtained.
@article{DM_2001_13_1_a7,
     author = {V. A. Vedernikov and D. G. Koptyukh},
     title = {Compositional formations of $c$-length~3},
     journal = {Diskretnaya Matematika},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a7/}
}
TY  - JOUR
AU  - V. A. Vedernikov
AU  - D. G. Koptyukh
TI  - Compositional formations of $c$-length~3
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 119
EP  - 131
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_1_a7/
LA  - ru
ID  - DM_2001_13_1_a7
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%A D. G. Koptyukh
%T Compositional formations of $c$-length~3
%J Diskretnaya Matematika
%D 2001
%P 119-131
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_1_a7/
%G ru
%F DM_2001_13_1_a7
V. A. Vedernikov; D. G. Koptyukh. Compositional formations of $c$-length~3. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a7/

[1] Skiba A. N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997 | MR | Zbl

[2] Skiba A. N., “O lokalnykh formatsiyakh dliny 5”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 135–149 | MR

[3] Chispiyakov S. V., O kompozitsionnykh formatsiyakh s zadannymi sistemami nilpotentnykh podformatsii, Dep. v VINITI 3098–B98, 1998

[4] Vedernikov V. A., “Formatsii konechnykh grupp s dopolnyaemymi podformatsiyami dliny 3”, Tezisy dokladov nauchno-prakticheskoi konferentsii, posvyaschennoi 60-letiyu BGPI, t. 1, Bryansk, 1990, 41–42

[5] Eidinov M. I., “Elementy vysoty dva reshetki formatsii konechnykh grupp”, Izv. vuzov. Matematika, 1990, no. 6, 77–80 | MR

[6] Vedernikov V. A., “Formatsii konechnykh grupp s dopolnyaemymi podformatsiyami dliny 3”, Voprosy algebry, 6 (1993), 16–21 | MR | Zbl

[7] Dzharadin Dzh., “Elementy vysoty 3 reshetki $p$-nasyschennykh formatsii”, Voprosy algebry, 9 (1995), 119–132

[8] Shemetkov L. A., Skiba A. N., “O minimalnom kompozitsionnom ekrane kompozitsionnoi formatsii”, Voprosy algebry yr 1992, 7, 39–43 | Zbl

[9] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, Moskva, 1978 | MR | Zbl

[10] Shemetkov L. A. Skiba A. N., Formatsii algebraicheskikh sistem, Nauka, Moskva, 1989 | MR

[11] Sorokina M. M., Kompozitsionnye kriticheskie formatsii, Diss. na soisk. uchenoi step. kand-ta fiz.-matem. nauk., Bryansk, 1998 | Zbl

[12] Vedernikov V. A., Sorokina M. M., “Kompozitsionnye nasledstvennye kriticheskie formaty”, Voprosy algebry, 11 (1997), 6–19 | MR | Zbl

[13] Skiba A. N., “O dopolnyaemykh podformatsiyakh”, Voprosy algebry, 9 (1996), 114–118 | MR | Zbl

[14] Bryant R. M., Bryce R. A., Hartley B., “The formaition generated by a finite group”, Bull. Austral. Math. Soc., 2:3 (1970), 347–357 | DOI | MR