Compositional formations of $c$-length~3
Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 119-131

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Theta$ be a full modular lattice of the formation of finite groups and let $0_\Theta$ be zero of $\Theta$. We say that a $\Theta$-formation $\mathfrak F\ne 0_\Theta$ has the $\Theta$-length $l_\Theta(\mathfrak F)$ equal to $n$ if there exist $\Theta$-formations $$ \mathfrak F_0,\mathfrak F_1, \ldots,\mathfrak F_n $$ such that $\mathfrak F_n=\mathfrak F$, $\mathfrak F_0=0_\Theta$, and $\mathfrak F_{i-1}$ is a maximal $\Theta$-subformation of $\mathfrak F_i$, $i=1,\ldots,n$. In this paper, a complete description of the structure of composite formations of the $c$-length 3 is obtained.
@article{DM_2001_13_1_a7,
     author = {V. A. Vedernikov and D. G. Koptyukh},
     title = {Compositional formations of $c$-length~3},
     journal = {Diskretnaya Matematika},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a7/}
}
TY  - JOUR
AU  - V. A. Vedernikov
AU  - D. G. Koptyukh
TI  - Compositional formations of $c$-length~3
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 119
EP  - 131
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_1_a7/
LA  - ru
ID  - DM_2001_13_1_a7
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%A D. G. Koptyukh
%T Compositional formations of $c$-length~3
%J Diskretnaya Matematika
%D 2001
%P 119-131
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_1_a7/
%G ru
%F DM_2001_13_1_a7
V. A. Vedernikov; D. G. Koptyukh. Compositional formations of $c$-length~3. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a7/