Compositional formations of $c$-length~3
Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 119-131
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Theta$ be a full modular lattice of the formation of finite groups
and let $0_\Theta$ be zero of $\Theta$. We say that a $\Theta$-formation
$\mathfrak F\ne 0_\Theta$ has the $\Theta$-length $l_\Theta(\mathfrak F)$ equal to
$n$ if there exist $\Theta$-formations
$$
\mathfrak F_0,\mathfrak F_1, \ldots,\mathfrak F_n
$$
such that $\mathfrak F_n=\mathfrak F$, $\mathfrak F_0=0_\Theta$, and
$\mathfrak F_{i-1}$ is a maximal $\Theta$-subformation of
$\mathfrak F_i$, $i=1,\ldots,n$. In this paper, a complete description
of the structure of composite formations of the $c$-length 3 is obtained.
@article{DM_2001_13_1_a7,
author = {V. A. Vedernikov and D. G. Koptyukh},
title = {Compositional formations of $c$-length~3},
journal = {Diskretnaya Matematika},
pages = {119--131},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a7/}
}
V. A. Vedernikov; D. G. Koptyukh. Compositional formations of $c$-length~3. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a7/