A spanning tree with a large number of pendant vertices
Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 63-72
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for every connected graph $G(V,E)$ with no adjacent
vertices of degree 2 there exists a spanning tree with more than $|V|/5$
end vertices. We describe a polynomial algorithm of constructing such a
tree. The constant 1/5 cannot be improved.
@article{DM_2001_13_1_a2,
author = {D. V. Karpov},
title = {A spanning tree with a large number of pendant vertices},
journal = {Diskretnaya Matematika},
pages = {63--72},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a2/}
}
D. V. Karpov. A spanning tree with a large number of pendant vertices. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a2/