A spanning tree with a large number of pendant vertices
Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 63-72
We prove that for every connected graph $G(V,E)$ with no adjacent vertices of degree 2 there exists a spanning tree with more than $|V|/5$ end vertices. We describe a polynomial algorithm of constructing such a tree. The constant 1/5 cannot be improved.
@article{DM_2001_13_1_a2,
author = {D. V. Karpov},
title = {A spanning tree with a large number of pendant vertices},
journal = {Diskretnaya Matematika},
pages = {63--72},
year = {2001},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a2/}
}
D. V. Karpov. A spanning tree with a large number of pendant vertices. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a2/
[1] Zelinka B., “Finding a spanning tree of a graph with maximal number of terminal vertices”, Kybernetika, 9:5 (1973), 357–360 | MR | Zbl
[2] Karpov D. V., “Udalenie vershin iz svyaznogo grafa”, Modelirovanie i analiz informatsionnykh sistem, 6 (1999), 21–25
[3] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, Moskva, 1982 | MR
[4] Kharari F., Teoriya grafov, Mir, Moskva, 1973 | MR
[5] Ore O., Teoriya grafov, Nauka, Moskva, 1968 | MR