On the number of independent sets in extenders
Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 56-62

Voir la notice de l'article provenant de la source Math-Net.Ru

We improve Alon's upper bound for the number of independent sets in regular graphs and extend it to almost regular graphs. We also present an upper bound for the number of independent sets of non-typical size for almost regular graphs and an upper bound of the form $2^{(n/2)(1-c\delta)}$, where $c$ is a constant, for the number of independent sets in almost regular $\delta$-expanders.
@article{DM_2001_13_1_a1,
     author = {A. A. Sapozhenko},
     title = {On the number of independent sets in extenders},
     journal = {Diskretnaya Matematika},
     pages = {56--62},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a1/}
}
TY  - JOUR
AU  - A. A. Sapozhenko
TI  - On the number of independent sets in extenders
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 56
EP  - 62
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_1_a1/
LA  - ru
ID  - DM_2001_13_1_a1
ER  - 
%0 Journal Article
%A A. A. Sapozhenko
%T On the number of independent sets in extenders
%J Diskretnaya Matematika
%D 2001
%P 56-62
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_1_a1/
%G ru
%F DM_2001_13_1_a1
A. A. Sapozhenko. On the number of independent sets in extenders. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 56-62. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a1/