Linear complexity of polylinear sequences
Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 3-55
Voir la notice de l'article provenant de la source Math-Net.Ru
A number of definitions of a linear complexity (rank) of a polylinear
recurring sequence over a ring or over a module is introduced.
The equivalence of these definitions and properties of linear
complexity for sequences over various classes of rings
(fields, division rings, commutative and commutative Artinian rings,
left Ore domains, Bezout domains) are studied. It is proved that
for sequences over a commutative Bezout domain, in the same way as for
sequences over a field, all introduced definitions are equivalent.
@article{DM_2001_13_1_a0,
author = {V. L. Kurakin},
title = {Linear complexity of polylinear sequences},
journal = {Diskretnaya Matematika},
pages = {3--55},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a0/}
}
V. L. Kurakin. Linear complexity of polylinear sequences. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 3-55. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a0/