Linear complexity of polylinear sequences
Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 3-55

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of definitions of a linear complexity (rank) of a polylinear recurring sequence over a ring or over a module is introduced. The equivalence of these definitions and properties of linear complexity for sequences over various classes of rings (fields, division rings, commutative and commutative Artinian rings, left Ore domains, Bezout domains) are studied. It is proved that for sequences over a commutative Bezout domain, in the same way as for sequences over a field, all introduced definitions are equivalent.
@article{DM_2001_13_1_a0,
     author = {V. L. Kurakin},
     title = {Linear complexity of polylinear sequences},
     journal = {Diskretnaya Matematika},
     pages = {3--55},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a0/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Linear complexity of polylinear sequences
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 3
EP  - 55
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_1_a0/
LA  - ru
ID  - DM_2001_13_1_a0
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Linear complexity of polylinear sequences
%J Diskretnaya Matematika
%D 2001
%P 3-55
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_1_a0/
%G ru
%F DM_2001_13_1_a0
V. L. Kurakin. Linear complexity of polylinear sequences. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 3-55. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a0/