Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2001_13_1_a0, author = {V. L. Kurakin}, title = {Linear complexity of polylinear sequences}, journal = {Diskretnaya Matematika}, pages = {3--55}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a0/} }
V. L. Kurakin. Linear complexity of polylinear sequences. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 3-55. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a0/
[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, Moskva, 1972 | MR
[2] Van der Varden B. L., Algebra, Nauka, Moskva, 1979 | MR
[3] Elizarov V. P., Konechnye koltsa, M., 1993
[4] Kash F., Moduli i koltsa, Mir, Moskva, 1981 | MR
[5] Kon P., Svobodnye koltsa i ikh svyazi, Mir, Moskva, 1975 | MR
[6] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, Nauchnoe izd-vo TVP, 1997, 139–202 | MR
[7] Kurakin V. L., “Binomialnoe predstavlenie lineinykh rekurrentnykh posledovatelnostei”, Fundamentalnaya i prikladnaya matematika, 1:2 (1995), 553–556 | MR | Zbl
[8] Kurakin V. L., “Algoritm Berlekempa–Messi nad konechnymi koltsami, modulyami i bimodulyami”, Diskretnaya matematika, 10:4 (1998), 3–34 | MR | Zbl
[9] Kurakin V. L., “Polinomialnye preobrazovaniya lineinykh rekurrentnykh posledovatelnostei nad konechnymi kommutativnymi koltsami”, Diskretnaya matematika, 12:3 (2000), 3–36 | MR | Zbl
[10] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kvazifrobeniusovymi modulyami”, Uspekhi matem. nauk, 48:3 (1993), 197–198 | MR | Zbl
[11] Nechaev A. A., “Konechnye kvazifrobeniusovy moduli, prilozheniya k kodam i lineinym rekurrentam”, Fundamentalnaya i prikladnaya matematika, 1:1 (1995), 229–254 | MR | Zbl
[12] Kherstein I., Nekommutativnye koltsa, Mir, Moskva, 1972 | MR
[13] Shafarevich I. R., Osnovnye ponyatiya algebry. Sovremennye problemy matematiki. Fundamentalnye napravleniya. Itogi nauki i tekhniki, 11, VINITI, Moskva, 1986 | MR
[14] Herlestam T., “On the complexity of functions of linear shift register sequences”, Int. Symp. Inform. Theory, Les Arc, France, 1982
[15] Key E. L., “An analysis of the structure and complexity of nonlinear binary sequence generators”, IEEE Trans. Inform. Theory, 22, no. 6, 1976, 732–736 | Zbl
[16] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurrences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[17] V. L. Kurakin, A. V. Mikhalev, A. A. Nechaev, V. N. Tsypyschev, Linear and polylinear recurring sequences over abelian groups and modules, 102:6 (2000), 4598–4626 | MR | Zbl
[18] McCoy N. H., Rings and ideals, Math. Assoc. Amer., Menasha, 1962 | Zbl
[19] Peterson B., Taft E. Y., “The Hopf algebra of lineary recursive sequences”, Aequat. Math., 20 (1980), 1–17 | DOI | MR | Zbl
[20] Rueppel R. A., Staffelbach O. J., “Products of linear recurring sequences with maximum complexity”, IEEE Trans. Inform. Theory, 33, no. 1, 1987, 126–131
[21] Sakata S.,, “Synthesis of two-dimensional linear feedback shift-registers and Groebner bases”, Lect. Notes Comput. Sci., 356, 1989, 394–407 | MR | Zbl
[22] Sakata S., “Extension of the Berlekamp–Massey algorithm to $N$ dimensions”, Inform. and Comput., 84:2 (1990), 207–239 | DOI | MR | Zbl
[23] Sakata S., “Two-dimensional shift register synthesis and Groebner bases for polynomial ideals over an integer residue ring”, Discr. Appl. Math., 33:1–3 (1991), 191–203 | DOI | MR | Zbl
[24] Zierler N., Mills W. H., “Products of linear recurring sequences”, J. Algebra, 27:1 (1973), 147–157 | DOI | MR | Zbl