On permutations with cycle lengths from a random set
Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 53-62

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\dots,\xi_n,\dots $ be a sequence of independent Bernoulli random variables which take the value 1 with probability $\sigma\in (0,1]$. Given this sequence, we construct the random set $A\subseteq\mathbf N=\{1,2,3,\dots\}$ as follows: a number $n\in\mathbf N$ is included in $A$ if and only if $\xi_n=1$. Let $T_n=T_n(A)$ denote the set of the permutations of degree $n$ whose cycle lengths belong to the set $A$. In this paper, we find the asymptotic behaviour of the number of elements of the set $T_n(A)$ as $n\to\infty$. For any fixed $A$, the uniform distribution is defined on $T_n(A)$. Under these hypotheses, limit theorems are obtained for the total number of cycles and the number of cycles of a fixed length in a random permutation in $T_n(A)$. Similar problems were earlier solved for various classes of deterministic sets $A$. This research was supported by the Russian Foundation for Basic Research, grants 00–15–96136 and 00–01–00090.
@article{DM_2000_12_4_a4,
     author = {A. L. Yakymiv},
     title = {On permutations with cycle lengths from a random set},
     journal = {Diskretnaya Matematika},
     pages = {53--62},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_4_a4/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - On permutations with cycle lengths from a random set
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 53
EP  - 62
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_4_a4/
LA  - ru
ID  - DM_2000_12_4_a4
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T On permutations with cycle lengths from a random set
%J Diskretnaya Matematika
%D 2000
%P 53-62
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_4_a4/
%G ru
%F DM_2000_12_4_a4
A. L. Yakymiv. On permutations with cycle lengths from a random set. Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 53-62. http://geodesic.mathdoc.fr/item/DM_2000_12_4_a4/