The completeness criterion for systems containing all one-place bounded-determinate functions
Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 138-158
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the completeness problem for the functional system $\mathrm P$ whose elements are finite-automaton functions (f.-a. functions) and the only operations are the operations of superposition.
It is known that $\mathrm P$ does not contain finite complete systems. However D. N. Babin constructed an example of a finite set of f.-a. functions which together with the set $\mathrm P(1)$ of all
one-place f.-a. functions forms a complete system in $\mathrm P$. In this paper, the completeness criterion of systems of f.-a. functions which contain $\mathrm P(1)$ is given. It allows us to construct nontrivial examples
of complete systems.
The research was supported by the Russian Foundation for Basic Research, grant 00–01–00374.
@article{DM_2000_12_4_a10,
author = {V. A. Buevich},
title = {The completeness criterion for systems containing all one-place bounded-determinate functions},
journal = {Diskretnaya Matematika},
pages = {138--158},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2000_12_4_a10/}
}
TY - JOUR AU - V. A. Buevich TI - The completeness criterion for systems containing all one-place bounded-determinate functions JO - Diskretnaya Matematika PY - 2000 SP - 138 EP - 158 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2000_12_4_a10/ LA - ru ID - DM_2000_12_4_a10 ER -
V. A. Buevich. The completeness criterion for systems containing all one-place bounded-determinate functions. Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 138-158. http://geodesic.mathdoc.fr/item/DM_2000_12_4_a10/