The completeness criterion for systems containing all one-place bounded-determinate functions
Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 138-158

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the completeness problem for the functional system $\mathrm P$ whose elements are finite-automaton functions (f.-a. functions) and the only operations are the operations of superposition. It is known that $\mathrm P$ does not contain finite complete systems. However D. N. Babin constructed an example of a finite set of f.-a. functions which together with the set $\mathrm P(1)$ of all one-place f.-a. functions forms a complete system in $\mathrm P$. In this paper, the completeness criterion of systems of f.-a. functions which contain $\mathrm P(1)$ is given. It allows us to construct nontrivial examples of complete systems. The research was supported by the Russian Foundation for Basic Research, grant 00–01–00374.
@article{DM_2000_12_4_a10,
     author = {V. A. Buevich},
     title = {The completeness criterion for systems containing all one-place bounded-determinate functions},
     journal = {Diskretnaya Matematika},
     pages = {138--158},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_4_a10/}
}
TY  - JOUR
AU  - V. A. Buevich
TI  - The completeness criterion for systems containing all one-place bounded-determinate functions
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 138
EP  - 158
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_4_a10/
LA  - ru
ID  - DM_2000_12_4_a10
ER  - 
%0 Journal Article
%A V. A. Buevich
%T The completeness criterion for systems containing all one-place bounded-determinate functions
%J Diskretnaya Matematika
%D 2000
%P 138-158
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_4_a10/
%G ru
%F DM_2000_12_4_a10
V. A. Buevich. The completeness criterion for systems containing all one-place bounded-determinate functions. Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 138-158. http://geodesic.mathdoc.fr/item/DM_2000_12_4_a10/