The parameters of recursive MDS-codes
Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 3-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

A full $m$-recursive code of length $n>m$ over an alphabet of $q\geq 2$ elements is the set of all segments of length $n$ of the recurring sequences that satisfy some fixed recursivity law $f(x_1,\dots,x_m)$. We investigate the conditions under which there exist such codes with distance $n-m+1$ (recursive MDS-codes). Let $\nu^r(m,q)$ be the maximum of the numbers $n$ for which a full $m$-recursive code exists. In our previous paper, it was noted that the condition $\nu^r(m,q)\geq n$ means that there exists an $m$-quasigroup $f$, which together with its $n-m-1$ sequential recursive derivatives forms an orthogonal system of $m$-quasigroups (of Latin squares for $m=2$). It was proved that $\nu^r(m,q)\geq 4$ for all values $q\in\mathbf N$ except possibly six of them. Here we strengthen this estimate for a series of values $q100$ and give some lower bounds for $\nu^r(m,q)$ for $m>2$. In particular, we prove that $\nu^r(m, q) \ge q+1$ for all primary $q$ and $m=1,\dots,q$ and $\nu^r(2^t-1,2^t)=2^t+2$ for $t = 2,3,4$. Moreover, we prove that there exists a linear recursive $[6,3,4]$-MDS-code over the group $Z_2\oplus Z_2$, but there is no such code over the field $F_4$.
@article{DM_2000_12_4_a0,
     author = {S. Gonz\'alez and E. Couselo and V. Markov and A. Nechaev},
     title = {The parameters of recursive {MDS-codes}},
     journal = {Diskretnaya Matematika},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_4_a0/}
}
TY  - JOUR
AU  - S. González
AU  - E. Couselo
AU  - V. Markov
AU  - A. Nechaev
TI  - The parameters of recursive MDS-codes
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 3
EP  - 24
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_4_a0/
LA  - ru
ID  - DM_2000_12_4_a0
ER  - 
%0 Journal Article
%A S. González
%A E. Couselo
%A V. Markov
%A A. Nechaev
%T The parameters of recursive MDS-codes
%J Diskretnaya Matematika
%D 2000
%P 3-24
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_4_a0/
%G ru
%F DM_2000_12_4_a0
S. González; E. Couselo; V. Markov; A. Nechaev. The parameters of recursive MDS-codes. Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 3-24. http://geodesic.mathdoc.fr/item/DM_2000_12_4_a0/

[1] MakVilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979

[2] MacWilliams F. J., Sloanen. J. A., Elsevier Science Publishers, B.V., 16, north Holland Mathematical Library, 1988 | MR

[3] Kouselo E., Gonsales S., Markov V., Nechaev A., “Rekursivnye MDR-kody i rekursivno differentsiruemye kvazigruppy”, Diskretnaya matematika, 10:2 (1998), 3–29

[4] Dénes J., Keedwell A. D., Akadémiai Kiadó, Academic Press, new York, Budapest ; Universities Press, London, 1974 | MR

[5] Heise W., Quattrocchi P., Informations-und Codierungstheorie, Springer, Berlin, 1995 | MR

[6] Bush K. A., “Orthogonal arrays of index unity”, Ann. Math. Stat., 23 (1952), 426–434 | DOI | MR | Zbl

[7] Segre B., “Curve rationali normali e $k$-archi negli spazi finiti”, Ann Mat. Pura Appl., 39 (1955), 357–379 | DOI | MR | Zbl

[8] Segre B., Lectures on modern geometry, Cremonese, Roma, 1961 | MR

[9] Thas J., “Normal rational curves and $k$-arcs in Galois spaces”, Rend. di Mat. Roma, 1 (1968), 331–334 | MR | Zbl

[10] Thas J., “Connection between the Grassmanian $G_{k-1;n}$ and the set of $k$-arcs in Galois space $S_{n,q}$”, Rend. di Mat. Roma, 2 (1969), 121–133 | MR

[11] Casse L., “A solution to Benjamino Segre's problem $I_{r,q}$ for $q$ even”, Atti Accad. naz. Lincei. Rend. Cl. Sci. Fis. Mat. nat., 46 (1969), 13–20 | MR | Zbl

[12] Maneri C., Silverman R., “A vector space packing problem”, J. Algebra, 4 (1996), 321–330 | DOI | MR

[13] Maneri C., Silverman R., “A combinatorial problem with applications to geometry”, J. Comb. Theory, 11 (1971), 118–121 | DOI | MR | Zbl

[14] Jurick R. R., “An algorithm for determining the largest maximally independent set of vectors from an $r$-dimensional vector space over a Galois field of $n$ elements Tech. Rep. ASD-TR-68-40 Air Force Systems”, Command. Wright–Patterson Air Force Base (Ohio, September), 1968

[15] Georgiades J., “Cyclic $(q+1,k)$-codes of odd order $q$ and even dimension $k$ are not optimal”, Atti Sem. Mat. Fis. Univ. Modena, 30 (1982), 284–285 | MR

[16] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurrences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[17] Abashin A. S., “Lineinye rekursivnye MDR-kody razmernostei 2 i 3”, Diskretnaya matematika, 12:2 (2000), 140–153 | MR | Zbl

[18] Couselo E., Gonzalez S., Markov V., Nechaev A., “Recursive MDS-codes and recursively differentiable $k$-quasigroups”, Proc. Sixth Intern. Workshop on Algebraic and Combinatorial Coding Theory (Pskov, Russia), 1998, 78–84 | Zbl

[19] Couselo E., Gonzalez S., Markov V., Nechaev A., “Recursive MDS-codes”, Proc. WCC'99 Workshop on Coding and Cryptography (Paris, France), 1999, 271–278

[20] Brayton R. K., Coppersmith D., Hoffman A. J., “Self orthogonal Latin squares for all orders $n\ne2,3,6$”, Bull. Amer. Math. Soc., 80 (1974), 116–119 | DOI | MR

[21] Zierler N., “Linear recurring sequences”, J. Soc. Ind. Appl. Math., 7:1 (1969), 31–48 | DOI | MR