The parameters of recursive MDS-codes
Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 3-24

Voir la notice de l'article provenant de la source Math-Net.Ru

A full $m$-recursive code of length $n>m$ over an alphabet of $q\geq 2$ elements is the set of all segments of length $n$ of the recurring sequences that satisfy some fixed recursivity law $f(x_1,\dots,x_m)$. We investigate the conditions under which there exist such codes with distance $n-m+1$ (recursive MDS-codes). Let $\nu^r(m,q)$ be the maximum of the numbers $n$ for which a full $m$-recursive code exists. In our previous paper, it was noted that the condition $\nu^r(m,q)\geq n$ means that there exists an $m$-quasigroup $f$, which together with its $n-m-1$ sequential recursive derivatives forms an orthogonal system of $m$-quasigroups (of Latin squares for $m=2$). It was proved that $\nu^r(m,q)\geq 4$ for all values $q\in\mathbf N$ except possibly six of them. Here we strengthen this estimate for a series of values $q100$ and give some lower bounds for $\nu^r(m,q)$ for $m>2$. In particular, we prove that $\nu^r(m, q) \ge q+1$ for all primary $q$ and $m=1,\dots,q$ and $\nu^r(2^t-1,2^t)=2^t+2$ for $t = 2,3,4$. Moreover, we prove that there exists a linear recursive $[6,3,4]$-MDS-code over the group $Z_2\oplus Z_2$, but there is no such code over the field $F_4$.
@article{DM_2000_12_4_a0,
     author = {S. Gonz\'alez and E. Couselo and V. Markov and A. Nechaev},
     title = {The parameters of recursive {MDS-codes}},
     journal = {Diskretnaya Matematika},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_4_a0/}
}
TY  - JOUR
AU  - S. González
AU  - E. Couselo
AU  - V. Markov
AU  - A. Nechaev
TI  - The parameters of recursive MDS-codes
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 3
EP  - 24
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_4_a0/
LA  - ru
ID  - DM_2000_12_4_a0
ER  - 
%0 Journal Article
%A S. González
%A E. Couselo
%A V. Markov
%A A. Nechaev
%T The parameters of recursive MDS-codes
%J Diskretnaya Matematika
%D 2000
%P 3-24
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_4_a0/
%G ru
%F DM_2000_12_4_a0
S. González; E. Couselo; V. Markov; A. Nechaev. The parameters of recursive MDS-codes. Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 3-24. http://geodesic.mathdoc.fr/item/DM_2000_12_4_a0/