Enumeration of the faces of complexes and normalizations of distributive lattices
Diskretnaya Matematika, Tome 12 (2000) no. 3, pp. 76-94

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary face system $\Phi\subseteq 2^{[m]}$ of the power set of the set $[m]=\{1,\dots,m\}$, we consider the vector descriptions $f(\Phi;m),h(\Phi;m)\in Q^{m+1}$ and the generating functions $$ F_{\Phi;m}(y-1)=\sum_{l=0}^mf_l(\Phi;m)(y-1)^{m-l} = H_{\Phi;m}(y)=\sum_{l=0}^mh_{l}(\Phi;m)y^{m-l}, $$ where $f_l(\Phi;m)=|\{A\in\Phi\colon |A|=l\}|$, $0\leq l\leq m$. The corresponding valuations on the Boolean lattice of all subsets of the power set $2^{[m]}$ are defined. For a partition of a face system $\Phi\subseteq{2}^{[m]}$ into Boolean intervals such that the partition consists of $p_{i,j}$ intervals $[A,B]$ with $|A|=j$ and $|B-A|=i$, $$ h_l(\Phi;m)=(-1)^l\sum_{i=0}^{m-l}\sum_{j=0}^l (-1)^j p_{i,j} \binom{m-i-j}{l-j}. $$ For a pair of mutually dual face systems $\Phi,\Phi^*\subseteq2^{[m]}$, where $\Phi^*=\{[m]-A\colon A\in{2}^{[m]}, A\notin\Phi\}$, $$ h_l(\Phi;m)+(-1)^l\sum_{j=l}^m \binom jlh_j(\Phi^*;m)=0, \qquad 1\leq l\leq m. $$
@article{DM_2000_12_3_a5,
     author = {A. O. Matveev},
     title = {Enumeration of the faces of complexes and normalizations of distributive lattices},
     journal = {Diskretnaya Matematika},
     pages = {76--94},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_3_a5/}
}
TY  - JOUR
AU  - A. O. Matveev
TI  - Enumeration of the faces of complexes and normalizations of distributive lattices
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 76
EP  - 94
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_3_a5/
LA  - ru
ID  - DM_2000_12_3_a5
ER  - 
%0 Journal Article
%A A. O. Matveev
%T Enumeration of the faces of complexes and normalizations of distributive lattices
%J Diskretnaya Matematika
%D 2000
%P 76-94
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_3_a5/
%G ru
%F DM_2000_12_3_a5
A. O. Matveev. Enumeration of the faces of complexes and normalizations of distributive lattices. Diskretnaya Matematika, Tome 12 (2000) no. 3, pp. 76-94. http://geodesic.mathdoc.fr/item/DM_2000_12_3_a5/