On the entropy of hereditary classes of colored graphs
Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 99-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results obtained earlier for hereditary classes of ordinary graphs are generalised to hereditary classes of coloured graphs. A coloured graph is a complete ordinary graph with coloured edges. We prove that the smallest positive value of the entropy of hereditary classes of $q$-coloured graphs is equal to $(1/2)\log_q2$ and characterise the minimal classes with such value of the entropy. The research was supported by the Russian Foundation for Basic Research, grant 98–01–00792.
@article{DM_2000_12_2_a7,
     author = {V. E. Alekseev and S. V. Sorochan},
     title = {On the entropy of hereditary classes of colored graphs},
     journal = {Diskretnaya Matematika},
     pages = {99--102},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a7/}
}
TY  - JOUR
AU  - V. E. Alekseev
AU  - S. V. Sorochan
TI  - On the entropy of hereditary classes of colored graphs
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 99
EP  - 102
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_2_a7/
LA  - ru
ID  - DM_2000_12_2_a7
ER  - 
%0 Journal Article
%A V. E. Alekseev
%A S. V. Sorochan
%T On the entropy of hereditary classes of colored graphs
%J Diskretnaya Matematika
%D 2000
%P 99-102
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_2_a7/
%G ru
%F DM_2000_12_2_a7
V. E. Alekseev; S. V. Sorochan. On the entropy of hereditary classes of colored graphs. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 99-102. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a7/

[1] Alekseev V. E., “Nasledstvennye klassy i kodirovanie grafov”, Problemy kibernetiki, 39 (1982), 151–164 | MR | Zbl

[2] Alekseev V. E., “Ob entropii fragmentno zamknutykh klassov grafov”, Kombinatorno-algebraicheskie metody v prikladnoi matematike, Gorkovskii gosuniversitet, Gorkii, 1986, 5–15 | MR

[3] Alekseev V. E., “Ob entropii dvumernykh fragmentno zamknutykh yazykov”, Kombinatorno-algebraicheskie metody v prikladnoi matematike, Gorkovskii gosuniversitet, Gorkii, 1987, 5–13

[4] Alekseev V. E., “Oblast znachenii entropii nasledstvennykh klassov grafov”, Diskretnaya matematika, 4:2 (1992), 148–157