On the entropy of hereditary classes of colored graphs
Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 99-102
The results obtained earlier for hereditary classes of ordinary graphs are generalised to hereditary classes of coloured graphs. A coloured graph is a complete ordinary graph with coloured edges. We prove that the smallest positive value of the entropy of hereditary classes of $q$-coloured graphs is equal to $(1/2)\log_q2$ and characterise the minimal classes with such value of the entropy. The research was supported by the Russian Foundation for Basic Research, grant 98–01–00792.
@article{DM_2000_12_2_a7,
author = {V. E. Alekseev and S. V. Sorochan},
title = {On the entropy of hereditary classes of colored graphs},
journal = {Diskretnaya Matematika},
pages = {99--102},
year = {2000},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a7/}
}
V. E. Alekseev; S. V. Sorochan. On the entropy of hereditary classes of colored graphs. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 99-102. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a7/
[1] Alekseev V. E., “Nasledstvennye klassy i kodirovanie grafov”, Problemy kibernetiki, 39 (1982), 151–164 | MR | Zbl
[2] Alekseev V. E., “Ob entropii fragmentno zamknutykh klassov grafov”, Kombinatorno-algebraicheskie metody v prikladnoi matematike, Gorkovskii gosuniversitet, Gorkii, 1986, 5–15 | MR
[3] Alekseev V. E., “Ob entropii dvumernykh fragmentno zamknutykh yazykov”, Kombinatorno-algebraicheskie metody v prikladnoi matematike, Gorkovskii gosuniversitet, Gorkii, 1987, 5–13
[4] Alekseev V. E., “Oblast znachenii entropii nasledstvennykh klassov grafov”, Diskretnaya matematika, 4:2 (1992), 148–157