Probability of correct decoding for a channel with additive normal noise and a binary symmetric channel with a random choice of code words
Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 93-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of estimating the probabilities of right decoding of messages consisting of zeros and ones in the case where zero is coded by a vector randomly chosen with equal probabilities from the set of all binary vectors of length $m$ of even weight and the one is coded by such a vector of length $m$ of odd weight. It is shown that the results for the model with additive Gaussian noise can significantly differ from the results for the simplified binary model.
@article{DM_2000_12_2_a6,
     author = {S. V. Pazizin},
     title = {Probability of correct decoding for a channel with additive normal noise and a binary symmetric channel with a random choice of code words},
     journal = {Diskretnaya Matematika},
     pages = {93--98},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a6/}
}
TY  - JOUR
AU  - S. V. Pazizin
TI  - Probability of correct decoding for a channel with additive normal noise and a binary symmetric channel with a random choice of code words
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 93
EP  - 98
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_2_a6/
LA  - ru
ID  - DM_2000_12_2_a6
ER  - 
%0 Journal Article
%A S. V. Pazizin
%T Probability of correct decoding for a channel with additive normal noise and a binary symmetric channel with a random choice of code words
%J Diskretnaya Matematika
%D 2000
%P 93-98
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_2_a6/
%G ru
%F DM_2000_12_2_a6
S. V. Pazizin. Probability of correct decoding for a channel with additive normal noise and a binary symmetric channel with a random choice of code words. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 93-98. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a6/

[1] Oshkin I. B., Proskurin G. V., “Nizhnie otsenki veroyatnosti razlicheniya podmnozhestv edinichnogo kuba”, Probl. peredachi inform., 30:3 (1994), 15–22 | MR | Zbl

[2] Pazizin S. V., “Obnaruzhenie i priem posledovatelnosti signalov, iskazhennykh sluchainoi pomekhoi i nezavisimym shumom”, Probl. peredachi inform., 34:1 (1998), 46–55 | MR | Zbl

[3] Borovkov A. A., Matematicheskaya statistika. Otsenka parametrov. Proverka gipotez, Nauka, Moskva, 1984 | MR

[4] Borovkov A. A., Teoriya veroyatnostei, Nauka, Moskva, 1986 | MR | Zbl

[5] Oosterhoff J., Van Zwet W. R., “A note on contiguity and Hellinger distance”, Contribution to Statistics, Academia, Prague, 1979, 157–166. | MR

[6] Rusas Dzh., Kontigualnost veroyatnostnykh mer, Mir, Moskva, 1975 | MR

[7] Arbekov I. M., “Optimalnaya diskretizatsiya nablyudenii slabykh signalov pri ogranichenii na skorost kvantovaniya”, Probl. peredachi inform., 34:1 (1998), 69–76 | MR | Zbl