Probability of correct decoding for a channel with additive normal noise and a binary symmetric channel with a random choice of code words
Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 93-98
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of estimating the probabilities of right decoding of messages consisting of zeros and ones in the case where zero is coded by a vector randomly chosen with equal probabilities from the set of all binary vectors of length $m$ of even weight and the one is coded by such a vector of length $m$ of odd weight. It is shown that the results for the model with additive Gaussian noise can significantly differ from the results for the simplified binary model.
@article{DM_2000_12_2_a6,
     author = {S. V. Pazizin},
     title = {Probability of correct decoding for a channel with additive normal noise and a binary symmetric channel with a random choice of code words},
     journal = {Diskretnaya Matematika},
     pages = {93--98},
     year = {2000},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a6/}
}
TY  - JOUR
AU  - S. V. Pazizin
TI  - Probability of correct decoding for a channel with additive normal noise and a binary symmetric channel with a random choice of code words
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 93
EP  - 98
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_2_a6/
LA  - ru
ID  - DM_2000_12_2_a6
ER  - 
%0 Journal Article
%A S. V. Pazizin
%T Probability of correct decoding for a channel with additive normal noise and a binary symmetric channel with a random choice of code words
%J Diskretnaya Matematika
%D 2000
%P 93-98
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/DM_2000_12_2_a6/
%G ru
%F DM_2000_12_2_a6
S. V. Pazizin. Probability of correct decoding for a channel with additive normal noise and a binary symmetric channel with a random choice of code words. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 93-98. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a6/

[1] Oshkin I. B., Proskurin G. V., “Nizhnie otsenki veroyatnosti razlicheniya podmnozhestv edinichnogo kuba”, Probl. peredachi inform., 30:3 (1994), 15–22 | MR | Zbl

[2] Pazizin S. V., “Obnaruzhenie i priem posledovatelnosti signalov, iskazhennykh sluchainoi pomekhoi i nezavisimym shumom”, Probl. peredachi inform., 34:1 (1998), 46–55 | MR | Zbl

[3] Borovkov A. A., Matematicheskaya statistika. Otsenka parametrov. Proverka gipotez, Nauka, Moskva, 1984 | MR

[4] Borovkov A. A., Teoriya veroyatnostei, Nauka, Moskva, 1986 | MR | Zbl

[5] Oosterhoff J., Van Zwet W. R., “A note on contiguity and Hellinger distance”, Contribution to Statistics, Academia, Prague, 1979, 157–166. | MR

[6] Rusas Dzh., Kontigualnost veroyatnostnykh mer, Mir, Moskva, 1975 | MR

[7] Arbekov I. M., “Optimalnaya diskretizatsiya nablyudenii slabykh signalov pri ogranichenii na skorost kvantovaniya”, Probl. peredachi inform., 34:1 (1998), 69–76 | MR | Zbl