Crossed homomorphisms of finite algebras with a scheme of binary operators
Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 66-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

A notion of a right (left) crossed homomorphism of finite algebras with a scheme of binary operators is introduced. This notion generalizes the notion of a right (left) crossed isotopy of quasigroups introduced by V. D. Belousov. A theorem on crossed homomorphisms (an analogue of the classical theorem on homomorphisms) is proved. The description of crossed homomorphisms of an algebra with a scheme of operators is reduced to the description of its crossed congruences. Crossed congruences of quasigroups that are isotopic to groups and cross-isotopic to groups are studied. The possibility of applying crossed congruences to constructing algorithms for solving equations over algebras is shown.
@article{DM_2000_12_2_a4,
     author = {G. A. Karpunin and I. G. Shaposhnikov},
     title = {Crossed homomorphisms of finite algebras with a scheme of binary operators},
     journal = {Diskretnaya Matematika},
     pages = {66--84},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a4/}
}
TY  - JOUR
AU  - G. A. Karpunin
AU  - I. G. Shaposhnikov
TI  - Crossed homomorphisms of finite algebras with a scheme of binary operators
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 66
EP  - 84
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_2_a4/
LA  - ru
ID  - DM_2000_12_2_a4
ER  - 
%0 Journal Article
%A G. A. Karpunin
%A I. G. Shaposhnikov
%T Crossed homomorphisms of finite algebras with a scheme of binary operators
%J Diskretnaya Matematika
%D 2000
%P 66-84
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_2_a4/
%G ru
%F DM_2000_12_2_a4
G. A. Karpunin; I. G. Shaposhnikov. Crossed homomorphisms of finite algebras with a scheme of binary operators. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 66-84. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a4/

[1] Belousov V. D., “Skreschennye izotopii kvazigrupp”, Kvazigruppy i ikh sistemy, Matematicheskie issledovaniya, 113, 1990, 14–20 | MR | Zbl

[2] Schneier B., Applied Cryptography. Protocols, Algorithms and Source Code in C, Wiley, New York, 1996 | Zbl

[3] Higgins Ph. J., “Algebras with a scheme of operators”, Math. Nachr., 27 (1963), 115–132 | DOI | MR | Zbl

[4] Gorchinskii Yu. N., “O gomomorfizmakh mnogoosnovnykh universalnykh algebr v svyazi s kriptograficheskimi primeneniyami”, Trudy po diskretnoi matematike, 1, 1997, 67–84 | MR

[5] Hellman M., Merkle R., Schroeppel R., Waschington L., Diffie W., “Results of an initial attemp to cryptanalyze the NBS data encryption standard”, Inform. Syst. Lab. Rep., SEL 76042, Stanford Univ., 1976

[6] Meyer C. H., “Ciphertext/plaintext and ciphertext/key dependencies vs. number of rounds for the data encryption standard”, AFJPS Conf. Proc., 1978, 47

[7] Chaurn D., Evertse J. H., “Cryptanalysis of DES with reduced number of rounds. Sequences of linear factors in block ciphers”, Lect. Notes in Comput. Sci., 218, 1986, 192–211

[8] Shaposhnikov I. G., “O kongruentsiyakh konechnykh mnogoosnovnykh universalnykh algebr”, Diskretnaya matematika, 11:3 (1999), 48–62 | MR | Zbl

[9] Kon P., Universalnaya algebra, Mir, Moskva, 1968 | MR

[10] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967 | MR