@article{DM_2000_12_2_a4,
author = {G. A. Karpunin and I. G. Shaposhnikov},
title = {Crossed homomorphisms of finite algebras with a scheme of binary operators},
journal = {Diskretnaya Matematika},
pages = {66--84},
year = {2000},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a4/}
}
G. A. Karpunin; I. G. Shaposhnikov. Crossed homomorphisms of finite algebras with a scheme of binary operators. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 66-84. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a4/
[1] Belousov V. D., “Skreschennye izotopii kvazigrupp”, Kvazigruppy i ikh sistemy, Matematicheskie issledovaniya, 113, 1990, 14–20 | MR | Zbl
[2] Schneier B., Applied Cryptography. Protocols, Algorithms and Source Code in C, Wiley, New York, 1996 | Zbl
[3] Higgins Ph. J., “Algebras with a scheme of operators”, Math. Nachr., 27 (1963), 115–132 | DOI | MR | Zbl
[4] Gorchinskii Yu. N., “O gomomorfizmakh mnogoosnovnykh universalnykh algebr v svyazi s kriptograficheskimi primeneniyami”, Trudy po diskretnoi matematike, 1, 1997, 67–84 | MR
[5] Hellman M., Merkle R., Schroeppel R., Waschington L., Diffie W., “Results of an initial attemp to cryptanalyze the NBS data encryption standard”, Inform. Syst. Lab. Rep., SEL 76042, Stanford Univ., 1976
[6] Meyer C. H., “Ciphertext/plaintext and ciphertext/key dependencies vs. number of rounds for the data encryption standard”, AFJPS Conf. Proc., 1978, 47
[7] Chaurn D., Evertse J. H., “Cryptanalysis of DES with reduced number of rounds. Sequences of linear factors in block ciphers”, Lect. Notes in Comput. Sci., 218, 1986, 192–211
[8] Shaposhnikov I. G., “O kongruentsiyakh konechnykh mnogoosnovnykh universalnykh algebr”, Diskretnaya matematika, 11:3 (1999), 48–62 | MR | Zbl
[9] Kon P., Universalnaya algebra, Mir, Moskva, 1968 | MR
[10] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967 | MR