On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk
Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 31-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi_n\}$ be a critical branching process in a random environment with linear-fractional generating functions, $T$ be the time of extinction of $\{\xi_n\}$, $T_M$ be the first maximum passage time of $\{\xi_n\}$. We study the asymptotic behaviour of $\mathsf P(T_M>n)$ and prove limit theorems for the random variables $\{T_M/n\mid T>n\}$ and $\{T_M/T\mid T>n\}$ as $n\to\infty$. Similar results are established for the stopped random walk with zero drift.
@article{DM_2000_12_2_a2,
     author = {V. I. Afanasyev},
     title = {On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk},
     journal = {Diskretnaya Matematika},
     pages = {31--50},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a2/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 31
EP  - 50
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_2_a2/
LA  - ru
ID  - DM_2000_12_2_a2
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk
%J Diskretnaya Matematika
%D 2000
%P 31-50
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_2_a2/
%G ru
%F DM_2000_12_2_a2
V. I. Afanasyev. On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 31-50. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a2/

[1] Afanasev V. I., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 9:3 (1997), 52–67 | MR

[2] Afanasev V. I., “O momente dostizheniya fiksirovannogo urovnya kriticheskim vetvyaschimsya protsessom v sluchainoi srede”, Diskretnaya matematika, 11:4 (1999), 33–47 | MR

[3] Afanasev V. I., “O funktsionalakh ot sluchainogo bluzhdaniya do momenta pervogo dostizheniya otritsatelnoi poluosi”, Teoriya veroyatnostei i ee primeneniya, 31:4 (1986), 773–777 | MR

[4] Doney R., “A note on conditioned random walk”, J. Appl. Probab, 20:2 (1983), 409–412 | DOI | MR | Zbl

[5] Afanasev V. I., “O maksimume kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 11 (1999), 86–102 | MR

[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 1, Mir, Moskva, 1984

[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, Moskva, 1984

[8] Kozlov M. V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatnostei i ee primeneniya, 21:4 (1976), 813–825 | MR | Zbl

[9] Durrett R. T., Iglehart D. L., “Functionals of brownian meander and brownian excursion”, Ann. Probab., 5:1 (1977), 130–135 | DOI | MR | Zbl

[10] Durrett R. T., Iglehart D. L., Miller D. R., “Weak convergence to brownian meander and brownian excursion”, Ann. Probab., 5:1 (1977), 117–129 | DOI | MR | Zbl

[11] Hooghiemstra G., “Conditioned limit theorems for waiting-time processes of the $M/G/1$ queue”, J. Appl. Probab., 20:3 (1983), 675–688 | DOI | MR | Zbl

[12] Afanasev V. I., “Uslovnoe sluchainoe bluzhdanie s otritsatelnym snosom”, Teoriya veroyatnostei i ee primeneniya, 24:1 (1979), 191–198 | MR

[13] Eppel M. S., “Lokalnaya predelnaya teorema dlya momenta pervogo pereskoka”, Sibirskii matem. zh., 20:1 (1979), 181–191 | MR