Linear recursive MDS-codes of dimensions~2 and~3
Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 140-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

A code $\mathcal K$ of length $n$ in an alphabet $\Omega$ is called linear in the general sense or simply linear if there exists a binary operation $+$ on $\Omega$ such that $(\Omega,+)$ is an abelian group and $\mathcal K$ is a subgroup of $(\Omega^n,+)$. We say that $\mathcal K$ is a $k$-recursive code if $\mathcal K$ consists of all words of length $n\ge k$ such that their coordinates are obtained from the first $k$ coordinates by some fixed recursive rule. Let $l^r(k,q)$ be the maximal $n$ such that there exists a linear $k$-recursive code of length $n$ in an alphabet of $q$ elements with the distance $n-k+1$ (an MDS code), and let $l^{ir}(k,q)$ be the maximal $n$ such that there exists a linear $k$-recursive idempotent (containing all constant words) MDS code of length $n$ in an alphabet of $q$ elements. Using the theory of linear recurring sequences we find $l^{ir}(2,q)$ and $l^{r}(3,q)$ for primary $q$.
@article{DM_2000_12_2_a10,
     author = {A. S. Abashin},
     title = {Linear recursive {MDS-codes} of dimensions~2 and~3},
     journal = {Diskretnaya Matematika},
     pages = {140--153},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a10/}
}
TY  - JOUR
AU  - A. S. Abashin
TI  - Linear recursive MDS-codes of dimensions~2 and~3
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 140
EP  - 153
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_2_a10/
LA  - ru
ID  - DM_2000_12_2_a10
ER  - 
%0 Journal Article
%A A. S. Abashin
%T Linear recursive MDS-codes of dimensions~2 and~3
%J Diskretnaya Matematika
%D 2000
%P 140-153
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_2_a10/
%G ru
%F DM_2000_12_2_a10
A. S. Abashin. Linear recursive MDS-codes of dimensions~2 and~3. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 140-153. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a10/

[1] Mak Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979 | Zbl

[2] Heise W., Quattrocci P., Informations und Codierings Theorie, Springer, Berlin, 1995

[3] Liddl R., Niderraiter G., Konechnye polya, Mir, Moskva, 1988

[4] Gonsales S., Kouselo E., Markov V. T., Nechaev A. A., “Rekursivnye MDR-kody i rekursivno differentsiruemye kvazigruppy”, Diskretnaya matematika, 10:2 (1998), 3–29 | MR

[5] Couselo E., Gonzalez S., Markov V., and Nechaev A., “Recursive MDS-codes”, Proc. WCC'99, Paris, 1999, 271–278

[6] Bush K. A., “Ortogonal arrays of index unity”, Ann. Math. Statist., 23 (1952), 426–434 | DOI | MR | Zbl

[7] Nechaev A. A., Kuzmin A. S., Markov V. T., “Lineinye kody nad konechnymi polyami i modulyami”, Fundamentalnaya i prikladnaya matematika, 3:1 (1996), 195–254 | MR

[8] Kuzmin A. S., Kurakin V. L., Mikhalev A. V., Nechaev A. A., “Linear recurrences over rings and modules”, J. Math. Sci., Contemporary Math. Appl., Thematic Surveys, 10 (1994) | Zbl