Pseudo-geometric graphs of the partial geometries $pG_2(4,t)$
Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 113-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a strongly regular graph $\Gamma$ with parameters $$ (10t+5,4t+4,t+3,2t+2), $$ which contains a bad triple coincides with the graph $T(6)$ or with $\bar J(8,4)$. We say that a triple of vertices is bad if these vertices are not pairwise adjacent and the intersection of their neighbourhoods is empty. As a corollary, we establish the fact that any $\lambda$-subgraph of $\Gamma$ consists of isolated vertices and triangles. This research was supported by the Russian Foundation for Basic Research, grant 99–01–00462.
@article{DM_2000_12_1_a9,
     author = {A. A. Makhnev},
     title = {Pseudo-geometric graphs of the partial geometries $pG_2(4,t)$},
     journal = {Diskretnaya Matematika},
     pages = {113--134},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_1_a9/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - Pseudo-geometric graphs of the partial geometries $pG_2(4,t)$
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 113
EP  - 134
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_1_a9/
LA  - ru
ID  - DM_2000_12_1_a9
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T Pseudo-geometric graphs of the partial geometries $pG_2(4,t)$
%J Diskretnaya Matematika
%D 2000
%P 113-134
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_1_a9/
%G ru
%F DM_2000_12_1_a9
A. A. Makhnev. Pseudo-geometric graphs of the partial geometries $pG_2(4,t)$. Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 113-134. http://geodesic.mathdoc.fr/item/DM_2000_12_1_a9/

[1] Brauver A. E., Lint I. Kh., “Silno regulyarnye grafy i chastichnye geometrii”, Kibern. sbornik, 24 (1987), 186–229

[2] Goethals J. M., Seidel J. J., “The regular two graph on 276 points”, Discrete Math., 12:1 (1975), 143–158 | DOI | MR | Zbl

[3] Spence E., “Is Taylor's graph geometric?”, Discrete Math., 106–107 (1975), 143–158 | MR

[4] Makhnev A. A., “O psevdogeometricheskikh grafakh chastichnykh geometrii $pG_2(4,t)$”, Matem. sbornik, 187:7 (1996), 97–112 | MR | Zbl

[5] Wilbrink H. A., Brouwer A. E., “$(57,14,1)$ strongly regular graph does not exist”, Proc. Kon. Nederl. Akad., Ser. A., 45, no. 1, 1983, 117–121 | MR | Zbl

[6] Blokhuis A., Brouwer A. E., “Locally 4-by-4 grid graphs”, J. Graph Theory, 13:2 (1989), 229–244 | DOI | MR | Zbl