A local limit theorem for the distribution of a part of the spectrum of a random binary function
Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 82-95

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a local limit theorem for the distribution of the vector (of growing dimension) consisting of some spectral coefficients of a random binary function of $n$ variables as $n\to\infty$. We correct a mistake in the asymptotic formula for the number of correlation-immune functions of order $k$ obtained in previous author's paper. We prove an asymptotic formula for the number of $(n,1,k)$-resilient functions as $n\to\infty$ and $k=k(n)=o(\sqrt n)$.
@article{DM_2000_12_1_a6,
     author = {O. V. Denisov},
     title = {A local limit theorem for the distribution of a part of the spectrum of a random binary function},
     journal = {Diskretnaya Matematika},
     pages = {82--95},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_1_a6/}
}
TY  - JOUR
AU  - O. V. Denisov
TI  - A local limit theorem for the distribution of a part of the spectrum of a random binary function
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 82
EP  - 95
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_1_a6/
LA  - ru
ID  - DM_2000_12_1_a6
ER  - 
%0 Journal Article
%A O. V. Denisov
%T A local limit theorem for the distribution of a part of the spectrum of a random binary function
%J Diskretnaya Matematika
%D 2000
%P 82-95
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_1_a6/
%G ru
%F DM_2000_12_1_a6
O. V. Denisov. A local limit theorem for the distribution of a part of the spectrum of a random binary function. Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 82-95. http://geodesic.mathdoc.fr/item/DM_2000_12_1_a6/