On asymptotic expansions in local limit theorems for equiprobable schemes of allocating particles to distinguishable cells
Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider equiprobable schemes of allocating $n$ indistinguishable and distinguishable particles to $N$ distinguishable cells. Under the condition that $n,N\to\infty$ so that $N-k\to\infty$ and $$ 0\alpha_0\le\alpha=(n-kr)/(N-k)\le\alpha_1\infty, $$ where $\alpha_0$, $\alpha_1$ are constants, we arrive at asymptotic expansions in local theorems on large deviations which approximate the probabilities $\mathsf P\{\theta_r(n,N)=k\}$ and $\mathsf P\{\mu_r(n,N)=k\}$, where $\theta_r(n,N)$ and $\mu_r(n,N)$ are the random variables equal to the number of cells with exactly $r$ particles each in the schemes under consideration, $r$ is fixed.
@article{DM_2000_12_1_a4,
     author = {A. N. Timashev},
     title = {On asymptotic expansions in local limit theorems for equiprobable schemes of allocating particles to distinguishable cells},
     journal = {Diskretnaya Matematika},
     pages = {60--69},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_1_a4/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - On asymptotic expansions in local limit theorems for equiprobable schemes of allocating particles to distinguishable cells
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 60
EP  - 69
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_1_a4/
LA  - ru
ID  - DM_2000_12_1_a4
ER  - 
%0 Journal Article
%A A. N. Timashev
%T On asymptotic expansions in local limit theorems for equiprobable schemes of allocating particles to distinguishable cells
%J Diskretnaya Matematika
%D 2000
%P 60-69
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_1_a4/
%G ru
%F DM_2000_12_1_a4
A. N. Timashev. On asymptotic expansions in local limit theorems for equiprobable schemes of allocating particles to distinguishable cells. Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 60-69. http://geodesic.mathdoc.fr/item/DM_2000_12_1_a4/

[1] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976 | MR | Zbl

[2] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, Moskva, 1972 | MR

[3] Prokhorov Yu. V., Rozanov Yu. A., Teoriya veroyatnostei. Osnovnye ponyatiya. Predelnye teoremy Sluchainye protsessy, Nauka, Moskva, 1973 | MR

[4] Timashev A. N., “Ob asimptoticheskikh razlozheniyakh dlya chisel Stirlinga I-go i II-go roda”, Diskretnaya matematika, 10:3 (1998), 148–159 | MR

[5] Timashev A. N., “Ob asimptoticheskikh razlozheniyakh v oblasti bolshikh uklonenii dlya binomialnogo i puassonovskogo raspredelenii”, Teoriya veroyatnostei i ee primeneniya, 43:1 (1998), 57–68 | MR | Zbl

[6] Good I. J., “An asymptotic formula for the differences of the powers at zero”, Ann. Math. Statist., 32:1 (1961), 249–256 | DOI | MR | Zbl

[7] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, Moskva, 1978 | MR | Zbl

[8] Timashev A. N., “Teoremy o bolshikh ukloneniyakh v skheme razmescheniya odinakovykh chastits po razlichnym yacheikam”, Diskretnaya matematika, 5:4 (1993), 29–42 | MR | Zbl