On a consequence of the Krohn–Rhodes theorem
Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 101-109
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Krohn–Rhodes theorem on the cascade connected automata was proved under the assumption that the basis contains special group automata. In this paper, we show that if the basis contains the constant automata, then this restriction can be omitted and for any simple group $G$ it is sufficient to take an arbitrary group automaton, whose group has $G$ as a divisor.
@article{DM_1999_11_4_a8,
     author = {S. V. Aleshin},
     title = {On a consequence of the {Krohn{\textendash}Rhodes} theorem},
     journal = {Diskretnaya Matematika},
     pages = {101--109},
     year = {1999},
     volume = {11},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_4_a8/}
}
TY  - JOUR
AU  - S. V. Aleshin
TI  - On a consequence of the Krohn–Rhodes theorem
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 101
EP  - 109
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_4_a8/
LA  - ru
ID  - DM_1999_11_4_a8
ER  - 
%0 Journal Article
%A S. V. Aleshin
%T On a consequence of the Krohn–Rhodes theorem
%J Diskretnaya Matematika
%D 1999
%P 101-109
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/DM_1999_11_4_a8/
%G ru
%F DM_1999_11_4_a8
S. V. Aleshin. On a consequence of the Krohn–Rhodes theorem. Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 101-109. http://geodesic.mathdoc.fr/item/DM_1999_11_4_a8/