On the number of Boolean functions in the Post classes $F_8^\mu$
Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 127-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of enumeration of all Boolean functions of $n$ variables of the rank $k$ from the Post classes $F^\mu_8$ is considered. This problem expressed in terms of the set theory is equivalent to the problem of enumeration of all $k$-families of different subsets of an $n$-set having the following property: any $\mu$ members of such a family have a non-empty intersection. A formula for calculating the cardinalities of these classes in terms of the graph theory is obtained. Explicit formulas for the cases $\mu=2$, $k\le 8$ (for $k\le 6$ they are given at the end of this paper), $\mu=3,4$, $k\le 6$, and for every $n$ were generated by a computer. As a consequence respective results for the classes $F^\mu_5$ are obtained.
@article{DM_1999_11_4_a10,
     author = {V. Jovovi\'c and G. Kilibarda},
     title = {On the number of {Boolean} functions in the {Post} classes $F_8^\mu$},
     journal = {Diskretnaya Matematika},
     pages = {127--138},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_4_a10/}
}
TY  - JOUR
AU  - V. Jovović
AU  - G. Kilibarda
TI  - On the number of Boolean functions in the Post classes $F_8^\mu$
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 127
EP  - 138
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_4_a10/
LA  - ru
ID  - DM_1999_11_4_a10
ER  - 
%0 Journal Article
%A V. Jovović
%A G. Kilibarda
%T On the number of Boolean functions in the Post classes $F_8^\mu$
%J Diskretnaya Matematika
%D 1999
%P 127-138
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1999_11_4_a10/
%G ru
%F DM_1999_11_4_a10
V. Jovović; G. Kilibarda. On the number of Boolean functions in the Post classes $F_8^\mu$. Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 127-138. http://geodesic.mathdoc.fr/item/DM_1999_11_4_a10/