Polynomial invariants of finite groups over fields of prime characteristic
Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring with the unit element $1$, and let $G=S_n$ be the symmetric group of degree $n \geq 1$. Let $A_{mn}^G$ denote the subalgebra of invariants of the polynomial algebra $A_{mn}=R[x_{11},\ldots,x_{1n};\ldots;x_{m1},\ldots,x_{mn}]$ with respect to $G$. A classical result of Noether [6] implies that if every non-zero integer is invertible in $R$, then $A_{mn}^G$ is generated by polarized elementary symmetric polynomials. As was recently shown by D. Richman, this result remains true under the condition that $n!$ is invertible in $R$. The purpose of this paper is to give a short proof of Richman's result based on the use of Waring's formula and closely related to Noether's original proof. The research was supported by Bilkent University, 06533 Bilkent, Ankara, Turkey.
@article{DM_1999_11_3_a0,
     author = {S. A. Stepanov},
     title = {Polynomial invariants of finite groups over fields of prime characteristic},
     journal = {Diskretnaya Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_3_a0/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - Polynomial invariants of finite groups over fields of prime characteristic
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 3
EP  - 14
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_3_a0/
LA  - ru
ID  - DM_1999_11_3_a0
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T Polynomial invariants of finite groups over fields of prime characteristic
%J Diskretnaya Matematika
%D 1999
%P 3-14
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1999_11_3_a0/
%G ru
%F DM_1999_11_3_a0
S. A. Stepanov. Polynomial invariants of finite groups over fields of prime characteristic. Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 3-14. http://geodesic.mathdoc.fr/item/DM_1999_11_3_a0/