A limit theorem on the shape of Ferrers graphs
Diskretnaya Matematika, Tome 11 (1999) no. 1, pp. 76-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behaviour of the $s$th largest part $L_{s,n}$ in a random partition of a positive integer $n$ as $n\to\infty$. The weak convergence of the distribution of $L_{s,n}$ to the Gaussian distribution is established provided $s$ is of order $n^{1/2}$ and $n\to\infty$.The work was supported by the Bulgarian Ministry of Education, Science, and Technologies, contract 705/97. A part of the work was done during author's visit at the Steklov Mathematical Institute of the Russian Academy of Sciences.
@article{DM_1999_11_1_a5,
     author = {L. R. Mutafchiev},
     title = {A limit theorem on the shape of {Ferrers} graphs},
     journal = {Diskretnaya Matematika},
     pages = {76--96},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_1_a5/}
}
TY  - JOUR
AU  - L. R. Mutafchiev
TI  - A limit theorem on the shape of Ferrers graphs
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 76
EP  - 96
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_1_a5/
LA  - ru
ID  - DM_1999_11_1_a5
ER  - 
%0 Journal Article
%A L. R. Mutafchiev
%T A limit theorem on the shape of Ferrers graphs
%J Diskretnaya Matematika
%D 1999
%P 76-96
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1999_11_1_a5/
%G ru
%F DM_1999_11_1_a5
L. R. Mutafchiev. A limit theorem on the shape of Ferrers graphs. Diskretnaya Matematika, Tome 11 (1999) no. 1, pp. 76-96. http://geodesic.mathdoc.fr/item/DM_1999_11_1_a5/