Discrete optimal filtering
Diskretnaya Matematika, Tome 10 (1998) no. 4, pp. 88-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of discrete optimal filtering: using the symbols of an observed binary sequence $\{\eta_{t}\}$, to construct a binary sequence $\{w_{t}^*\}$ which is in a sense the best estimate of a non-observable deterministic (non-random) binary sequence $\{\vartheta_{t}\}$ related to the sequence $\{\eta_{t}\}$ by the equalities $$ \eta _{t}= \xi_{t}\oplus \vartheta _{t}, \qquad t=1,2,\ldots,N, $$ where $\{\xi_{t}\}$ is a random stationary binary sequence and $\oplus$ means the addition modulo 2. We demonstrate an applications of the discrete optimal filtering in the cases where the sequence $\{\vartheta_{t}\}$ is an encoded black-and-white facsimile or television image transmitted through some channel with noise.
@article{DM_1998_10_4_a5,
     author = {B. V. Gladkov and A. N. Datsenko-Chigorin},
     title = {Discrete optimal filtering},
     journal = {Diskretnaya Matematika},
     pages = {88--103},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_4_a5/}
}
TY  - JOUR
AU  - B. V. Gladkov
AU  - A. N. Datsenko-Chigorin
TI  - Discrete optimal filtering
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 88
EP  - 103
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_4_a5/
LA  - ru
ID  - DM_1998_10_4_a5
ER  - 
%0 Journal Article
%A B. V. Gladkov
%A A. N. Datsenko-Chigorin
%T Discrete optimal filtering
%J Diskretnaya Matematika
%D 1998
%P 88-103
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_4_a5/
%G ru
%F DM_1998_10_4_a5
B. V. Gladkov; A. N. Datsenko-Chigorin. Discrete optimal filtering. Diskretnaya Matematika, Tome 10 (1998) no. 4, pp. 88-103. http://geodesic.mathdoc.fr/item/DM_1998_10_4_a5/