Discrete optimal filtering
Diskretnaya Matematika, Tome 10 (1998) no. 4, pp. 88-103
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a problem of discrete optimal filtering: using the symbols
of an observed binary sequence $\{\eta_{t}\}$, to construct a binary
sequence $\{w_{t}^*\}$ which is in a sense the best estimate
of a non-observable
deterministic (non-random) binary sequence $\{\vartheta_{t}\}$ related
to the sequence $\{\eta_{t}\}$ by the equalities
$$
\eta _{t}= \xi_{t}\oplus \vartheta _{t},
\qquad
t=1,2,\ldots,N,
$$
where $\{\xi_{t}\}$ is a random stationary binary sequence
and $\oplus$ means the addition modulo 2.
We demonstrate an applications of the discrete optimal filtering
in the cases where the sequence $\{\vartheta_{t}\}$ is an encoded
black-and-white
facsimile or television image transmitted through some channel
with noise.
@article{DM_1998_10_4_a5,
author = {B. V. Gladkov and A. N. Datsenko-Chigorin},
title = {Discrete optimal filtering},
journal = {Diskretnaya Matematika},
pages = {88--103},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1998_10_4_a5/}
}
B. V. Gladkov; A. N. Datsenko-Chigorin. Discrete optimal filtering. Diskretnaya Matematika, Tome 10 (1998) no. 4, pp. 88-103. http://geodesic.mathdoc.fr/item/DM_1998_10_4_a5/