Simplified justification of the probabilistic Miller--Rabin test for primality
Diskretnaya Matematika, Tome 10 (1998) no. 4, pp. 35-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $m$ be a positive integer and $\mathbb Z_m^*$ be the set of all positive integeres which are no greater than $m$ and relatively prime to $m$. A number $s\in\mathbb Z_m^*$ is called a witness of primality of $m$ if the sequence $$ s^{(m-1)2^{-i}} \pmod m,\quad i = 0,1,\ldots, r,\quad m-1 = 2^{r}t, $$ where $t$ is odd, consists only of ones, or begins with ones and continues by minus one and, may be, then by other integers. We give a simple proof of the following known assertion that is a ground of the Miller–Rabin primality test: The cardinality of the set of witnesses of primality of a composite $m$ is no greater than $\varphi(m)/4$, where $\varphi(m)$ is Euler's totient function. This work was supported by the Russian Foundation for Basic Research, grant 96–01–068.
@article{DM_1998_10_4_a1,
     author = {S. B. Gashkov},
     title = {Simplified justification of the probabilistic {Miller--Rabin} test for primality},
     journal = {Diskretnaya Matematika},
     pages = {35--38},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_4_a1/}
}
TY  - JOUR
AU  - S. B. Gashkov
TI  - Simplified justification of the probabilistic Miller--Rabin test for primality
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 35
EP  - 38
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_4_a1/
LA  - ru
ID  - DM_1998_10_4_a1
ER  - 
%0 Journal Article
%A S. B. Gashkov
%T Simplified justification of the probabilistic Miller--Rabin test for primality
%J Diskretnaya Matematika
%D 1998
%P 35-38
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_4_a1/
%G ru
%F DM_1998_10_4_a1
S. B. Gashkov. Simplified justification of the probabilistic Miller--Rabin test for primality. Diskretnaya Matematika, Tome 10 (1998) no. 4, pp. 35-38. http://geodesic.mathdoc.fr/item/DM_1998_10_4_a1/