Large deviations for sums of lattice random variables under the Cramer condition
Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 115-130
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The sums of independent identically distributed random variables having a lattice distribution are considered. It is assumed that the unilateral Cramer condition holds in a bounded interval $(0,\lambda)$, that is, the extreme right conjugate distribution does not exist. Under an additional assumption on the regularity of the right tail of the underlying distribution, the local and integral theorems on large deviations of an arbitrarily high order are established.
@article{DM_1998_10_3_a9,
     author = {A. V. Nagaev},
     title = {Large deviations for sums of lattice random variables under the {Cramer} condition},
     journal = {Diskretnaya Matematika},
     pages = {115--130},
     year = {1998},
     volume = {10},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_3_a9/}
}
TY  - JOUR
AU  - A. V. Nagaev
TI  - Large deviations for sums of lattice random variables under the Cramer condition
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 115
EP  - 130
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_3_a9/
LA  - ru
ID  - DM_1998_10_3_a9
ER  - 
%0 Journal Article
%A A. V. Nagaev
%T Large deviations for sums of lattice random variables under the Cramer condition
%J Diskretnaya Matematika
%D 1998
%P 115-130
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/DM_1998_10_3_a9/
%G ru
%F DM_1998_10_3_a9
A. V. Nagaev. Large deviations for sums of lattice random variables under the Cramer condition. Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 115-130. http://geodesic.mathdoc.fr/item/DM_1998_10_3_a9/