On discrete sublinear and superlinear operators
Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 87-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two generalizations of linear (matrix) operator are considered: discrete sublinear and discrete superlinear operators. It is shown that a number of operators considered in literature can be reduced to them. We investigate contractive properties of these operators and the asymptotic behaviour of the sequence $$ x^{t+1}=H(x^t),\qquad t=0,1,\ldots, $$ where $x^0$ is an arbitrary non-negative initial vector and $H$ is an operator. We introduce the notion of left eigen-element of an operator which is applied to solve one problem of mathematical economics, namely, the problem to find the effective functional in the Neumann–Leontiev model.
@article{DM_1998_10_2_a6,
     author = {V. D. Matveenko},
     title = {On discrete sublinear and superlinear operators},
     journal = {Diskretnaya Matematika},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_2_a6/}
}
TY  - JOUR
AU  - V. D. Matveenko
TI  - On discrete sublinear and superlinear operators
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 87
EP  - 100
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_2_a6/
LA  - ru
ID  - DM_1998_10_2_a6
ER  - 
%0 Journal Article
%A V. D. Matveenko
%T On discrete sublinear and superlinear operators
%J Diskretnaya Matematika
%D 1998
%P 87-100
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_2_a6/
%G ru
%F DM_1998_10_2_a6
V. D. Matveenko. On discrete sublinear and superlinear operators. Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 87-100. http://geodesic.mathdoc.fr/item/DM_1998_10_2_a6/