Inequalities for the number of high-probability outcomes of a multinomial scheme
Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 45-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give a series of lower bounds for the number $w(x)$ of the outcomes of a discrete random variables whose total probability is no less than $x$. Several examples demonstrate that these inequalities, under some conditions, allow us to estimate the function $w(x)$ to very high accuracy. This research was supported by the Russian Foundation for Basic Research, grants 96–01–00531, 96–15–96092.
@article{DM_1998_10_2_a2,
     author = {V. G. Mikhailov},
     title = {Inequalities for the number of high-probability outcomes of a multinomial scheme},
     journal = {Diskretnaya Matematika},
     pages = {45--51},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_2_a2/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Inequalities for the number of high-probability outcomes of a multinomial scheme
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 45
EP  - 51
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_2_a2/
LA  - ru
ID  - DM_1998_10_2_a2
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Inequalities for the number of high-probability outcomes of a multinomial scheme
%J Diskretnaya Matematika
%D 1998
%P 45-51
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_2_a2/
%G ru
%F DM_1998_10_2_a2
V. G. Mikhailov. Inequalities for the number of high-probability outcomes of a multinomial scheme. Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 45-51. http://geodesic.mathdoc.fr/item/DM_1998_10_2_a2/