Construction in $P_k$ of maximal classes that do not have finite bases
Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 137-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

The closed classes of $k$-valued logic $P_k$, $k\geq 3$, which are maximal among all closed classes without finite bases are constructed. Such classes have no finite bases, but all their proper closed super-classes have finite bases. Such classes are called here maximal. It is shown that for any $k\geq 3$ maximal classes exist in $P_k$, and the set of these classes is at most countable. For $k=3$ a maximal class of depth 5 in the lattice $\mathfrak C_{k}$ of all closed classes of $k$-valued logic is found, and for $k>3$ similar classes of depth 3 are described.
@article{DM_1998_10_2_a10,
     author = {E. A. Mikheeva},
     title = {Construction in $P_k$ of maximal classes that do not have finite bases},
     journal = {Diskretnaya Matematika},
     pages = {137--159},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_2_a10/}
}
TY  - JOUR
AU  - E. A. Mikheeva
TI  - Construction in $P_k$ of maximal classes that do not have finite bases
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 137
EP  - 159
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_2_a10/
LA  - ru
ID  - DM_1998_10_2_a10
ER  - 
%0 Journal Article
%A E. A. Mikheeva
%T Construction in $P_k$ of maximal classes that do not have finite bases
%J Diskretnaya Matematika
%D 1998
%P 137-159
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_2_a10/
%G ru
%F DM_1998_10_2_a10
E. A. Mikheeva. Construction in $P_k$ of maximal classes that do not have finite bases. Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 137-159. http://geodesic.mathdoc.fr/item/DM_1998_10_2_a10/