Recursive MDS-codes and recursively differentiable quasigroups
Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 3-29
Voir la notice de l'article provenant de la source Math-Net.Ru
A code of length $n$ over an alphabet of $q\geq 2$ elements is called a full
$k$-recursive code if it consists of all segments of length $n$ of a
recurring sequence that satisfies some fixed (nonlinear in general)
recursivity law $f(x_1,\ldots,x_k)$ of order $k\leq n$.
Let $n^r(k,q)$ be the maximal number $n$ such that there exists such a code
with distance $n-k+1$ (MDS-code). The condition $n^r(k, q)\geq n$
means that the function $f$ together with its $n-k-1$ sequential recursive
derivatives forms an orthogonal system of $k$-quasigroups.
We prove that if $q\notin\{2,6,14,18,26,42\}$, then $n^r(2,q)\geq 4$.
The proof is reduced to constructing some special pairs of orthogonal
Latin squares.
@article{DM_1998_10_2_a0,
author = {S. Gonz\'alez and E. Couselo and V. T. Markov and A. A. Nechaev},
title = {Recursive {MDS-codes} and recursively differentiable quasigroups},
journal = {Diskretnaya Matematika},
pages = {3--29},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1998_10_2_a0/}
}
TY - JOUR AU - S. González AU - E. Couselo AU - V. T. Markov AU - A. A. Nechaev TI - Recursive MDS-codes and recursively differentiable quasigroups JO - Diskretnaya Matematika PY - 1998 SP - 3 EP - 29 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1998_10_2_a0/ LA - ru ID - DM_1998_10_2_a0 ER -
S. González; E. Couselo; V. T. Markov; A. A. Nechaev. Recursive MDS-codes and recursively differentiable quasigroups. Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 3-29. http://geodesic.mathdoc.fr/item/DM_1998_10_2_a0/