Recursive MDS-codes and recursively differentiable quasigroups
Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 3-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

A code of length $n$ over an alphabet of $q\geq 2$ elements is called a full $k$-recursive code if it consists of all segments of length $n$ of a recurring sequence that satisfies some fixed (nonlinear in general) recursivity law $f(x_1,\ldots,x_k)$ of order $k\leq n$. Let $n^r(k,q)$ be the maximal number $n$ such that there exists such a code with distance $n-k+1$ (MDS-code). The condition $n^r(k, q)\geq n$ means that the function $f$ together with its $n-k-1$ sequential recursive derivatives forms an orthogonal system of $k$-quasigroups. We prove that if $q\notin\{2,6,14,18,26,42\}$, then $n^r(2,q)\geq 4$. The proof is reduced to constructing some special pairs of orthogonal Latin squares.
@article{DM_1998_10_2_a0,
     author = {S. Gonz\'alez and E. Couselo and V. T. Markov and A. A. Nechaev},
     title = {Recursive {MDS-codes} and recursively differentiable quasigroups},
     journal = {Diskretnaya Matematika},
     pages = {3--29},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_2_a0/}
}
TY  - JOUR
AU  - S. González
AU  - E. Couselo
AU  - V. T. Markov
AU  - A. A. Nechaev
TI  - Recursive MDS-codes and recursively differentiable quasigroups
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 3
EP  - 29
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_2_a0/
LA  - ru
ID  - DM_1998_10_2_a0
ER  - 
%0 Journal Article
%A S. González
%A E. Couselo
%A V. T. Markov
%A A. A. Nechaev
%T Recursive MDS-codes and recursively differentiable quasigroups
%J Diskretnaya Matematika
%D 1998
%P 3-29
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_2_a0/
%G ru
%F DM_1998_10_2_a0
S. González; E. Couselo; V. T. Markov; A. A. Nechaev. Recursive MDS-codes and recursively differentiable quasigroups. Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 3-29. http://geodesic.mathdoc.fr/item/DM_1998_10_2_a0/