Asymptotics of the permanents of some $(0,1)$-matrices
Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 82-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_{nm}$ be a matrix whose columns are all possible distinct Boolean vectors of length $n$ containing exactly $m$ ones each. We consider the asymptotic behaviour of the permanents of the matrices $A(i_1,\ldots,i_k;n)$ constituted by $i_1$ copies of $B_{n1}$, $i_2$ copies of $B_{n2}$, etc., and finally, $i_k$ copies of $B_{nk}$. We demonstrate that $\operatorname{per} A(i_1,\ldots,i_k;n)$ is of order of magnitude $S_1^n$ as $n\to\infty$, where $$ S_1=S(i_1,\ldots,i_k;n)=\sum_{m=1}^k i_m\binom{n-1}{m-1}. $$ This research was supported by the Russian Foundation for Basic Research, grant 93–01–00491.
@article{DM_1998_10_1_a7,
     author = {V. N. Shevchenko and A. A. Pavlyuchenok},
     title = {Asymptotics of the permanents of some $(0,1)$-matrices},
     journal = {Diskretnaya Matematika},
     pages = {82--86},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_1_a7/}
}
TY  - JOUR
AU  - V. N. Shevchenko
AU  - A. A. Pavlyuchenok
TI  - Asymptotics of the permanents of some $(0,1)$-matrices
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 82
EP  - 86
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_1_a7/
LA  - ru
ID  - DM_1998_10_1_a7
ER  - 
%0 Journal Article
%A V. N. Shevchenko
%A A. A. Pavlyuchenok
%T Asymptotics of the permanents of some $(0,1)$-matrices
%J Diskretnaya Matematika
%D 1998
%P 82-86
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_1_a7/
%G ru
%F DM_1998_10_1_a7
V. N. Shevchenko; A. A. Pavlyuchenok. Asymptotics of the permanents of some $(0,1)$-matrices. Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 82-86. http://geodesic.mathdoc.fr/item/DM_1998_10_1_a7/