Asymptotics of the permanents of some $(0,1)$-matrices
Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 82-86
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $B_{nm}$ be a matrix whose columns are all possible distinct Boolean vectors of length
$n$ containing exactly $m$ ones each. We consider the asymptotic behaviour
of the permanents of the matrices $A(i_1,\ldots,i_k;n)$ constituted by
$i_1$ copies of $B_{n1}$, $i_2$ copies of $B_{n2}$, etc., and finally, $i_k$
copies of $B_{nk}$. We demonstrate that
$\operatorname{per} A(i_1,\ldots,i_k;n)$ is of order of magnitude $S_1^n$ as $n\to\infty$, where
$$
S_1=S(i_1,\ldots,i_k;n)=\sum_{m=1}^k i_m\binom{n-1}{m-1}.
$$ This research was supported by the Russian Foundation for Basic Research,
grant 93–01–00491.
@article{DM_1998_10_1_a7,
author = {V. N. Shevchenko and A. A. Pavlyuchenok},
title = {Asymptotics of the permanents of some $(0,1)$-matrices},
journal = {Diskretnaya Matematika},
pages = {82--86},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1998_10_1_a7/}
}
V. N. Shevchenko; A. A. Pavlyuchenok. Asymptotics of the permanents of some $(0,1)$-matrices. Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 82-86. http://geodesic.mathdoc.fr/item/DM_1998_10_1_a7/