Transitivity-preserving operators on relations
Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 28-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal T=\mathcal T(A)$ be the class of all transitive relations on a finite set $A$. We say that an operator $r=F(r_1,\ldots, r_n)$ on the set of relations preserves transitivity if $$ r_1,\ldots,r_n\in\mathcal T\quad \Rightarrow\quad r\in\mathcal T. $$ Let us introduce operators $\tau_n^{(u)}(r_1,\ldots,r_n)$, $u=0,1$, $n\geq 0$, by setting $\tau_0^{(0)}=\emptyset$, $\tau_0^{(1)}=A^2$, $$ \tau_n^{(u)}=r_1\cap(\overline{(r_1^{-1})}\cup \tau_{n-1}^{(u)}(r_2,\ldots,r_n)), \qquad n\geq 1. $$ Any operator derived from $\tau_n^{(u)}$ by replacing some of $r_i$, $1\leq i\leq n,$ with $r_i^{-1}$ is called a $\tau$-operator. It is shown that an operator $F$ representable by means of set-theoretic operations and inversion of relations preserves transitivity if and only if it is representable as an intersection of $\tau$-operators.
@article{DM_1998_10_1_a3,
     author = {L. A. Sholomov},
     title = {Transitivity-preserving operators on relations},
     journal = {Diskretnaya Matematika},
     pages = {28--45},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_1_a3/}
}
TY  - JOUR
AU  - L. A. Sholomov
TI  - Transitivity-preserving operators on relations
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 28
EP  - 45
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_1_a3/
LA  - ru
ID  - DM_1998_10_1_a3
ER  - 
%0 Journal Article
%A L. A. Sholomov
%T Transitivity-preserving operators on relations
%J Diskretnaya Matematika
%D 1998
%P 28-45
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_1_a3/
%G ru
%F DM_1998_10_1_a3
L. A. Sholomov. Transitivity-preserving operators on relations. Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 28-45. http://geodesic.mathdoc.fr/item/DM_1998_10_1_a3/