On combinatorial functions related to the B\"urman--Lagrange series. Quasi-orthogonality relations
Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 127-140
Voir la notice de l'article provenant de la source Math-Net.Ru
Let
$$
g(t)=\sum_{n=m}^\infty g_n\frac{t^n}{n!},\quad
g_m\ne 0,\quad m\ge 1,
$$
be a formal power series (f.p.s.) over the field $K$ of real or complex
numbers. In connection with the Bürman–Lagrange series, it is useful
to consider the quantities
$$
P^{(m)}(n,k)=\frac{(n-1)!}{(k-1)!}\operatorname{Coef}_{t^{n-k}}[t^n g^{-n/m}(t)],\quad
n=1,2,\dots,\quad k=1,\ldots,n,
$$
which were introduced by the author and for $m=1$ coincide with the
$B$-functions introduced by M. L. Platonov. Using Henrici's method,
we show that
the set of quantities
$$
Q^{(m)}(n,k)=\frac{n!}{k!}\operatorname{Coef}_{t^{n}}[g^{k/m}(t)],\quad
n=1,2,\dots,\quad k=1,\ldots,n,
$$
forms a quasi-orthogonal to the set $\{P^{(m)}(n,k)\}$,
$n=1,2,\dots$, $k=1,\ldots,n$. We describe some properties of the
coefficients of
the series $x^r(t)$, the $r$th power of a f.p.s. $x(t)$ over
the field $K$, where $r\in K$.
This research was supported by the Russian Foundation for Basic Research,
grant 96–01–00531.
@article{DM_1998_10_1_a11,
author = {B. I. Selivanov},
title = {On combinatorial functions related to the {B\"urman--Lagrange} series. {Quasi-orthogonality} relations},
journal = {Diskretnaya Matematika},
pages = {127--140},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1998_10_1_a11/}
}
TY - JOUR AU - B. I. Selivanov TI - On combinatorial functions related to the B\"urman--Lagrange series. Quasi-orthogonality relations JO - Diskretnaya Matematika PY - 1998 SP - 127 EP - 140 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1998_10_1_a11/ LA - ru ID - DM_1998_10_1_a11 ER -
B. I. Selivanov. On combinatorial functions related to the B\"urman--Lagrange series. Quasi-orthogonality relations. Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/DM_1998_10_1_a11/