The number of $q$-ary words with restrictions on the length of a maximal series
Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 10-19
It is proved that the number $g(q,s,n)$ of words of length $n$ over a $q$-letter alphabet such that the length of any subword consisting of one and the same letter is no greater than $s$ is very close to $\lambda^n$, where $\lambda$ is the greatest real root of the polynomial $x^{s+1}-qx^s+q-1$. A representation of $\lambda$ in the form of a series is found. The results obtained let us calculate asymptotical values of $g(q,s,n)$ and the function $h(q,s,n)=g(q,s,n)-g(q,s-1,n)$ as $n\to\infty$ for $s>c \log n$, where $c$ is an arbitrary positive constant.The research was supported by the Russian Foundation for Basic Research, grants 96–01–01614, 96–01–01893, and 96–01–01496, respectively, for each of the authors.
@article{DM_1998_10_1_a1,
author = {A. V. Kostochka and V. D. Mazurov and L. Ja. Savel'ev},
title = {The number of $q$-ary words with restrictions on the length of a maximal series},
journal = {Diskretnaya Matematika},
pages = {10--19},
year = {1998},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1998_10_1_a1/}
}
TY - JOUR AU - A. V. Kostochka AU - V. D. Mazurov AU - L. Ja. Savel'ev TI - The number of $q$-ary words with restrictions on the length of a maximal series JO - Diskretnaya Matematika PY - 1998 SP - 10 EP - 19 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/DM_1998_10_1_a1/ LA - ru ID - DM_1998_10_1_a1 ER -
A. V. Kostochka; V. D. Mazurov; L. Ja. Savel'ev. The number of $q$-ary words with restrictions on the length of a maximal series. Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 10-19. http://geodesic.mathdoc.fr/item/DM_1998_10_1_a1/