The number of $q$-ary words with restrictions on the length of a maximal series
Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 10-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the number $g(q,s,n)$ of words of length $n$ over a $q$-letter alphabet such that the length of any subword consisting of one and the same letter is no greater than $s$ is very close to $\lambda^n$, where $\lambda$ is the greatest real root of the polynomial $x^{s+1}-qx^s+q-1$. A representation of $\lambda$ in the form of a series is found. The results obtained let us calculate asymptotical values of $g(q,s,n)$ and the function $h(q,s,n)=g(q,s,n)-g(q,s-1,n)$ as $n\to\infty$ for $s>c \log n$, where $c$ is an arbitrary positive constant.The research was supported by the Russian Foundation for Basic Research, grants 96–01–01614, 96–01–01893, and 96–01–01496, respectively, for each of the authors.
@article{DM_1998_10_1_a1,
     author = {A. V. Kostochka and V. D. Mazurov and L. Ja. Savel'ev},
     title = {The number of $q$-ary words with restrictions on the length of a maximal series},
     journal = {Diskretnaya Matematika},
     pages = {10--19},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_1_a1/}
}
TY  - JOUR
AU  - A. V. Kostochka
AU  - V. D. Mazurov
AU  - L. Ja. Savel'ev
TI  - The number of $q$-ary words with restrictions on the length of a maximal series
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 10
EP  - 19
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_1_a1/
LA  - ru
ID  - DM_1998_10_1_a1
ER  - 
%0 Journal Article
%A A. V. Kostochka
%A V. D. Mazurov
%A L. Ja. Savel'ev
%T The number of $q$-ary words with restrictions on the length of a maximal series
%J Diskretnaya Matematika
%D 1998
%P 10-19
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_1_a1/
%G ru
%F DM_1998_10_1_a1
A. V. Kostochka; V. D. Mazurov; L. Ja. Savel'ev. The number of $q$-ary words with restrictions on the length of a maximal series. Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 10-19. http://geodesic.mathdoc.fr/item/DM_1998_10_1_a1/