On closed classes of polynomials over finite fields
Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of the lattice of closed classes of $k$-valued functions is studied. Let $F$ be the class of all polynomials over a field of $k=p^n$ elements, and let $L^0$ be the class of linear forms over this field. The paper gives a complete description of all closed classes lying in the indicated lattice between $L^0$ and $F$. In particular, (finite) bases of such classes are given.
@article{DM_1997_9_4_a4,
     author = {A. P. Semigrodskikh and E. V. Sukhanov},
     title = {On closed classes of polynomials over finite fields},
     journal = {Diskretnaya Matematika},
     pages = {50--62},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_4_a4/}
}
TY  - JOUR
AU  - A. P. Semigrodskikh
AU  - E. V. Sukhanov
TI  - On closed classes of polynomials over finite fields
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 50
EP  - 62
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_4_a4/
LA  - ru
ID  - DM_1997_9_4_a4
ER  - 
%0 Journal Article
%A A. P. Semigrodskikh
%A E. V. Sukhanov
%T On closed classes of polynomials over finite fields
%J Diskretnaya Matematika
%D 1997
%P 50-62
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_4_a4/
%G ru
%F DM_1997_9_4_a4
A. P. Semigrodskikh; E. V. Sukhanov. On closed classes of polynomials over finite fields. Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 50-62. http://geodesic.mathdoc.fr/item/DM_1997_9_4_a4/