On the complexity of recognizing the completeness of sets of Boolean functions realized by Zhegalkin polynomials
Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 24-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of an algorithm with polynomial time complexity which determines whether a system of Boolean functions realized in the form of Zhegalkin polynomial is complete is proved. It is also proved that if $l$ is the length and $r$ is the rank of the polynomial for a Boolean function, then $l\ge\sqrt{2^r}-1$ for a self-dual function and $l\ge\sqrt{2^r}$ for an even function.
@article{DM_1997_9_4_a2,
     author = {S. N. Selezneva},
     title = {On the complexity of recognizing the completeness of sets of {Boolean} functions realized by {Zhegalkin} polynomials},
     journal = {Diskretnaya Matematika},
     pages = {24--31},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_4_a2/}
}
TY  - JOUR
AU  - S. N. Selezneva
TI  - On the complexity of recognizing the completeness of sets of Boolean functions realized by Zhegalkin polynomials
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 24
EP  - 31
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_4_a2/
LA  - ru
ID  - DM_1997_9_4_a2
ER  - 
%0 Journal Article
%A S. N. Selezneva
%T On the complexity of recognizing the completeness of sets of Boolean functions realized by Zhegalkin polynomials
%J Diskretnaya Matematika
%D 1997
%P 24-31
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_4_a2/
%G ru
%F DM_1997_9_4_a2
S. N. Selezneva. On the complexity of recognizing the completeness of sets of Boolean functions realized by Zhegalkin polynomials. Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 24-31. http://geodesic.mathdoc.fr/item/DM_1997_9_4_a2/