On the complexity of recognizing the completeness of sets of Boolean functions realized by Zhegalkin polynomials
Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 24-31
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of an algorithm with polynomial time complexity which determines whether a system of Boolean functions realized in the form of Zhegalkin polynomial is complete is proved. It is also proved that if
$l$ is the length and $r$ is the rank of the polynomial for a Boolean function, then $l\ge\sqrt{2^r}-1$ for a self-dual function and $l\ge\sqrt{2^r}$ for an even function.
@article{DM_1997_9_4_a2,
author = {S. N. Selezneva},
title = {On the complexity of recognizing the completeness of sets of {Boolean} functions realized by {Zhegalkin} polynomials},
journal = {Diskretnaya Matematika},
pages = {24--31},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_4_a2/}
}
TY - JOUR AU - S. N. Selezneva TI - On the complexity of recognizing the completeness of sets of Boolean functions realized by Zhegalkin polynomials JO - Diskretnaya Matematika PY - 1997 SP - 24 EP - 31 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1997_9_4_a2/ LA - ru ID - DM_1997_9_4_a2 ER -
S. N. Selezneva. On the complexity of recognizing the completeness of sets of Boolean functions realized by Zhegalkin polynomials. Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 24-31. http://geodesic.mathdoc.fr/item/DM_1997_9_4_a2/