On domains completely specifying Boolean functions
Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 21-23
It is shown that for an arbitrary Boolean function $f\colon\{0,1\}^n\to\{0,1\}$ with complexity $L(f)\le2^{n-5}/n$ there exist four domains $D_1,D_2,D_3,D_4\subseteq\{0,1\}^n$ such that $f$ is completely specified by its values on these domains. If $L(f)=o(2^n)$ for $i\in\{1,\dots,4\}$, then $D_i=o(2^n)$.
@article{DM_1997_9_4_a1,
author = {A. V. Chashkin},
title = {On domains completely specifying {Boolean} functions},
journal = {Diskretnaya Matematika},
pages = {21--23},
year = {1997},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_4_a1/}
}
A. V. Chashkin. On domains completely specifying Boolean functions. Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 21-23. http://geodesic.mathdoc.fr/item/DM_1997_9_4_a1/