Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals
Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 101-116
Voir la notice de l'article provenant de la source Math-Net.Ru
A subgraph of the point graph of the generalized quadrangle $\mathrm{GQ}(s,t)$
is called a hyperoval, if it is a regular graph
without triangles of valence $t+1$ with even number of vertices. In the triangular extensions
of $\mathrm{GQ}(s,t)$ the role of $\mu$-subgraphs can be played by hyperovals only.
We give a classification of the hyperovals in $\mathrm{GQ}(4,2)$.
For any even $\mu$ from 6 to 18 there exists a hyperoval with $\mu$ points.
This research was supported by the Russian Foundation for Basic Research,
grant 94–01–00802–a.
@article{DM_1997_9_3_a8,
author = {A. A. Makhnev},
title = {Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals},
journal = {Diskretnaya Matematika},
pages = {101--116},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_3_a8/}
}
A. A. Makhnev. Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals. Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 101-116. http://geodesic.mathdoc.fr/item/DM_1997_9_3_a8/