Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals
Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 101-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgraph of the point graph of the generalized quadrangle $\mathrm{GQ}(s,t)$ is called a hyperoval, if it is a regular graph without triangles of valence $t+1$ with even number of vertices. In the triangular extensions of $\mathrm{GQ}(s,t)$ the role of $\mu$-subgraphs can be played by hyperovals only. We give a classification of the hyperovals in $\mathrm{GQ}(4,2)$. For any even $\mu$ from 6 to 18 there exists a hyperoval with $\mu$ points. This research was supported by the Russian Foundation for Basic Research, grant 94–01–00802–a.
@article{DM_1997_9_3_a8,
     author = {A. A. Makhnev},
     title = {Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals},
     journal = {Diskretnaya Matematika},
     pages = {101--116},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_3_a8/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 101
EP  - 116
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_3_a8/
LA  - ru
ID  - DM_1997_9_3_a8
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals
%J Diskretnaya Matematika
%D 1997
%P 101-116
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_3_a8/
%G ru
%F DM_1997_9_3_a8
A. A. Makhnev. Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals. Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 101-116. http://geodesic.mathdoc.fr/item/DM_1997_9_3_a8/