Probability distributions on a linear vector space over a Galois field and on sets of permutations
Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 20-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the exact and limit distributions of the number of vectors from a union of subspaces of the $n$-dimensional vector space $V_n$ over the Galois field $GF(q)$ which enter into a random set of $d$, $1\le d\le n$, linearly independent vectors of this space. We prove that the random variable equal to the number of positions of a random equiprobable permutation which are non-discordant to a $d$-restriction of $m$ pairwise discordant permutations of degree $n$ has in limit, as $n\to\infty$ and $m$ is fixed, the Poisson distribution with parameter $m$. As a consequence we obtain a simple proof of the asymptotic formula for the number of $m\times n$ Latin rectangles where $m$ is fixed and $n\to\infty$.
@article{DM_1997_9_3_a1,
     author = {V. N. Sachkov},
     title = {Probability distributions on a linear vector space over a {Galois} field and on sets of permutations},
     journal = {Diskretnaya Matematika},
     pages = {20--35},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_3_a1/}
}
TY  - JOUR
AU  - V. N. Sachkov
TI  - Probability distributions on a linear vector space over a Galois field and on sets of permutations
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 20
EP  - 35
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_3_a1/
LA  - ru
ID  - DM_1997_9_3_a1
ER  - 
%0 Journal Article
%A V. N. Sachkov
%T Probability distributions on a linear vector space over a Galois field and on sets of permutations
%J Diskretnaya Matematika
%D 1997
%P 20-35
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_3_a1/
%G ru
%F DM_1997_9_3_a1
V. N. Sachkov. Probability distributions on a linear vector space over a Galois field and on sets of permutations. Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 20-35. http://geodesic.mathdoc.fr/item/DM_1997_9_3_a1/