A conditional limit theorem with a random number of summands
Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 131-138
Voir la notice de l'article provenant de la source Math-Net.Ru
For a sequence of independent identically distributed random vectors
with integer-valued non-negative components
$(\xi_1^{(i)},\ldots,\xi_s^{(i)},\eta_i)$, $i=1,2,\dots$,
we prove a limit theorem for the joint distribution of the sums
$$
\sum_{i=1}^m \xi_j^{(i)}, \qquad j=1,\dots,s,
$$
for $n\to\infty$ and the random $m$ determined by the condition
$$
\sum_{i=1}^m \eta_i = n.
$$
@article{DM_1997_9_2_a13,
author = {S. G. Gushchin},
title = {A conditional limit theorem with a random number of summands},
journal = {Diskretnaya Matematika},
pages = {131--138},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_2_a13/}
}
S. G. Gushchin. A conditional limit theorem with a random number of summands. Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 131-138. http://geodesic.mathdoc.fr/item/DM_1997_9_2_a13/