A conditional limit theorem with a random number of summands
Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 131-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence of independent identically distributed random vectors with integer-valued non-negative components $(\xi_1^{(i)},\ldots,\xi_s^{(i)},\eta_i)$, $i=1,2,\dots$, we prove a limit theorem for the joint distribution of the sums $$ \sum_{i=1}^m \xi_j^{(i)}, \qquad j=1,\dots,s, $$ for $n\to\infty$ and the random $m$ determined by the condition $$ \sum_{i=1}^m \eta_i = n. $$
@article{DM_1997_9_2_a13,
     author = {S. G. Gushchin},
     title = {A conditional limit theorem with a random number of summands},
     journal = {Diskretnaya Matematika},
     pages = {131--138},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_2_a13/}
}
TY  - JOUR
AU  - S. G. Gushchin
TI  - A conditional limit theorem with a random number of summands
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 131
EP  - 138
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_2_a13/
LA  - ru
ID  - DM_1997_9_2_a13
ER  - 
%0 Journal Article
%A S. G. Gushchin
%T A conditional limit theorem with a random number of summands
%J Diskretnaya Matematika
%D 1997
%P 131-138
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_2_a13/
%G ru
%F DM_1997_9_2_a13
S. G. Gushchin. A conditional limit theorem with a random number of summands. Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 131-138. http://geodesic.mathdoc.fr/item/DM_1997_9_2_a13/