Characterization of some extremal graphs with a diameter at most three
Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 134-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem to find the lower bound for the number of edges for graphs in which after removing an arbitrary vertex or an arbitrary edge the diameter of the graph obtained does not exceed three. Also, the graphs for which the lower bound determined is attained are enumerated.
@article{DM_1997_9_1_a10,
     author = {D. L. Belotserkovskii},
     title = {Characterization of some extremal graphs with a diameter at most three},
     journal = {Diskretnaya Matematika},
     pages = {134--146},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_1_a10/}
}
TY  - JOUR
AU  - D. L. Belotserkovskii
TI  - Characterization of some extremal graphs with a diameter at most three
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 134
EP  - 146
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_1_a10/
LA  - ru
ID  - DM_1997_9_1_a10
ER  - 
%0 Journal Article
%A D. L. Belotserkovskii
%T Characterization of some extremal graphs with a diameter at most three
%J Diskretnaya Matematika
%D 1997
%P 134-146
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_1_a10/
%G ru
%F DM_1997_9_1_a10
D. L. Belotserkovskii. Characterization of some extremal graphs with a diameter at most three. Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 134-146. http://geodesic.mathdoc.fr/item/DM_1997_9_1_a10/