Estimates for the number of threshold functions
Diskretnaya Matematika, Tome 8 (1996) no. 4, pp. 92-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a lower bound and refine Schläfli's upper bound for the number of threshold functions. As a consequence it is shown that the assertion that the number of threshold functions is asymptotically equal to $$ 2\sum_{i=0}^n{2^n-1\choose i} $$ is equivalent to the assertion that the portion of the collections consisting of $n-1$ different $(1,-1)$-vectors $v_1,\ldots,v_{n-1}$ of length $n$ such that $\newspan(v_1,\ldots,v_{n-1})\cap \{1,-1\}^n$ coincides with the set of all vectors of the form $(\pm v_1,\ldots,\pm v_{n-1})$ tends to 1 as $n \to \infty$.The work was supported by the Russian Foundation for Basic Research, grant 95-01-00369.
@article{DM_1996_8_4_a7,
     author = {A. A. Irmatov},
     title = {Estimates for the number of threshold functions},
     journal = {Diskretnaya Matematika},
     pages = {92--107},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_4_a7/}
}
TY  - JOUR
AU  - A. A. Irmatov
TI  - Estimates for the number of threshold functions
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 92
EP  - 107
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_4_a7/
LA  - ru
ID  - DM_1996_8_4_a7
ER  - 
%0 Journal Article
%A A. A. Irmatov
%T Estimates for the number of threshold functions
%J Diskretnaya Matematika
%D 1996
%P 92-107
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_4_a7/
%G ru
%F DM_1996_8_4_a7
A. A. Irmatov. Estimates for the number of threshold functions. Diskretnaya Matematika, Tome 8 (1996) no. 4, pp. 92-107. http://geodesic.mathdoc.fr/item/DM_1996_8_4_a7/