On a connection between the complexities of the discrete logarithmization and the Diffie--Hellman problems
Diskretnaya Matematika, Tome 8 (1996) no. 3, pp. 22-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that under some assumptions of a theoretical nature the complexity $L$ of the discrete logarithm problem in an arbitrary cyclic group of order $m$ is estimated in the rather general case in terms of the complexity $D$ of the Diffie–Hellman problem by the formula $$ L \le \exp \left\{{\log D\log m\over \log\log m\log\log\log m}\right\}, $$ which gives a subexponential estimate for $L$ provided a polynomial estimate for $D$ is valid.
@article{DM_1996_8_3_a1,
     author = {M. A. Cherepnev},
     title = {On a connection between the complexities of the discrete logarithmization and the {Diffie--Hellman} problems},
     journal = {Diskretnaya Matematika},
     pages = {22--30},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_3_a1/}
}
TY  - JOUR
AU  - M. A. Cherepnev
TI  - On a connection between the complexities of the discrete logarithmization and the Diffie--Hellman problems
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 22
EP  - 30
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_3_a1/
LA  - ru
ID  - DM_1996_8_3_a1
ER  - 
%0 Journal Article
%A M. A. Cherepnev
%T On a connection between the complexities of the discrete logarithmization and the Diffie--Hellman problems
%J Diskretnaya Matematika
%D 1996
%P 22-30
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_3_a1/
%G ru
%F DM_1996_8_3_a1
M. A. Cherepnev. On a connection between the complexities of the discrete logarithmization and the Diffie--Hellman problems. Diskretnaya Matematika, Tome 8 (1996) no. 3, pp. 22-30. http://geodesic.mathdoc.fr/item/DM_1996_8_3_a1/