On a connection between the complexities of the discrete logarithmization and the Diffie--Hellman problems
Diskretnaya Matematika, Tome 8 (1996) no. 3, pp. 22-30
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that under some assumptions of a theoretical nature the complexity
$L$ of the discrete logarithm problem in an arbitrary cyclic group of
order $m$ is estimated in the rather general case in terms of the complexity
$D$ of the Diffie–Hellman problem by the formula
$$
L \le \exp \left\{{\log D\log m\over \log\log m\log\log\log m}\right\},
$$
which gives a subexponential
estimate for $L$ provided a polynomial estimate for $D$ is valid.
@article{DM_1996_8_3_a1,
author = {M. A. Cherepnev},
title = {On a connection between the complexities of the discrete logarithmization and the {Diffie--Hellman} problems},
journal = {Diskretnaya Matematika},
pages = {22--30},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1996_8_3_a1/}
}
TY - JOUR AU - M. A. Cherepnev TI - On a connection between the complexities of the discrete logarithmization and the Diffie--Hellman problems JO - Diskretnaya Matematika PY - 1996 SP - 22 EP - 30 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1996_8_3_a1/ LA - ru ID - DM_1996_8_3_a1 ER -
M. A. Cherepnev. On a connection between the complexities of the discrete logarithmization and the Diffie--Hellman problems. Diskretnaya Matematika, Tome 8 (1996) no. 3, pp. 22-30. http://geodesic.mathdoc.fr/item/DM_1996_8_3_a1/