Basic relations for the $S$-classification of functions of multivalued logic
Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 99-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

For sets of functions of multi-valued logic the $S$-closure is defined as the closure with respect to the operations of superposition and transition to the dual functions. To describe the $S$-closed classes lying in the $S$-precomplete class of idempotent functions we introduce some standard relations which are called basic. We prove that any \linebreak[3] $S$-closed class of idempotent functions specified by arbitrary two-place relations can be defined by appropriate basic relations as well.The work was partially supported by the Russian Foundation for Basic Research, Grants 93–011–1525 and 95–01–01625–a.
@article{DM_1996_8_1_a6,
     author = {S. S. Marchenkov},
     title = {Basic relations for the $S$-classification of functions of multivalued logic},
     journal = {Diskretnaya Matematika},
     pages = {99--128},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_1_a6/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Basic relations for the $S$-classification of functions of multivalued logic
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 99
EP  - 128
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_1_a6/
LA  - ru
ID  - DM_1996_8_1_a6
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Basic relations for the $S$-classification of functions of multivalued logic
%J Diskretnaya Matematika
%D 1996
%P 99-128
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_1_a6/
%G ru
%F DM_1996_8_1_a6
S. S. Marchenkov. Basic relations for the $S$-classification of functions of multivalued logic. Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 99-128. http://geodesic.mathdoc.fr/item/DM_1996_8_1_a6/