A completeness criterion for nonhomogeneous functions with delays
Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 86-98
We consider a functional system of non-homogeneous functions \[ f\colon \{0,1\}^{n}\to C,\qquad C\in \{\{0,1\},\{0,3\}\} \] with delays $t\in {\N}_{0}=\{0,1,2,\ldots \}$, i.e., the set of pairs $(f,t)$ with operations of synchronous superposition. For this system we give the description of all $\phi$-complete sets in terms of precomplete classes. A set is $\phi$-complete if using its elements and the operations mentioned above the pair $(f,t)$ for any function $f$ can be obtained. This description implies the algorithmic solvability of the $\phi$-completeness problem.
@article{DM_1996_8_1_a5,
author = {N. V. Il'chenko},
title = {A completeness criterion for nonhomogeneous functions with delays},
journal = {Diskretnaya Matematika},
pages = {86--98},
year = {1996},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1996_8_1_a5/}
}
N. V. Il'chenko. A completeness criterion for nonhomogeneous functions with delays. Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 86-98. http://geodesic.mathdoc.fr/item/DM_1996_8_1_a5/