A completeness criterion for nonhomogeneous functions with delays
Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 86-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a functional system of non-homogeneous functions \[ f\colon \{0,1\}^{n}\to C,\qquad C\in \{\{0,1\},\{0,3\}\} \] with delays $t\in {\N}_{0}=\{0,1,2,\ldots \}$, i.e., the set of pairs $(f,t)$ with operations of synchronous superposition. For this system we give the description of all $\phi$-complete sets in terms of precomplete classes. A set is $\phi$-complete if using its elements and the operations mentioned above the pair $(f,t)$ for any function $f$ can be obtained. This description implies the algorithmic solvability of the $\phi$-completeness problem.
@article{DM_1996_8_1_a5,
     author = {N. V. Il'chenko},
     title = {A completeness criterion for nonhomogeneous functions with delays},
     journal = {Diskretnaya Matematika},
     pages = {86--98},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_1_a5/}
}
TY  - JOUR
AU  - N. V. Il'chenko
TI  - A completeness criterion for nonhomogeneous functions with delays
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 86
EP  - 98
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_1_a5/
LA  - ru
ID  - DM_1996_8_1_a5
ER  - 
%0 Journal Article
%A N. V. Il'chenko
%T A completeness criterion for nonhomogeneous functions with delays
%J Diskretnaya Matematika
%D 1996
%P 86-98
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_1_a5/
%G ru
%F DM_1996_8_1_a5
N. V. Il'chenko. A completeness criterion for nonhomogeneous functions with delays. Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 86-98. http://geodesic.mathdoc.fr/item/DM_1996_8_1_a5/