On the computation of logarithms on elliptic curves
Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 65-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of solving an exponential equation over a cyclic subgroup of order $m$ of the group $E$ of points of an elliptic curve over the finite field $F_q$. We prove that if $F_{q_1}$ is a minimal extension of $F_q$ such that the subgroup of the points rational over $F_{q_1}$ of the group $E$ contains a subgroup isomorphic to $\Z/m\times\Z/m$, then the complexity of solving the equation mentioned above is no greater than the complexity of computing logarithms in the field $F_{q_1}$ or the complexity of $O(\ln m)$ arithmetic operations in that field. Thus, the computing of logarithms on elliptic curves is reduced to the computing of logarithms in a finite field. By a different approach, this result was obtained by Menezes, Okamoto, and Vanstone.
@article{DM_1996_8_1_a3,
     author = {I. A. Semaev},
     title = {On the computation of logarithms on elliptic curves},
     journal = {Diskretnaya Matematika},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_1_a3/}
}
TY  - JOUR
AU  - I. A. Semaev
TI  - On the computation of logarithms on elliptic curves
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 65
EP  - 71
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_1_a3/
LA  - ru
ID  - DM_1996_8_1_a3
ER  - 
%0 Journal Article
%A I. A. Semaev
%T On the computation of logarithms on elliptic curves
%J Diskretnaya Matematika
%D 1996
%P 65-71
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_1_a3/
%G ru
%F DM_1996_8_1_a3
I. A. Semaev. On the computation of logarithms on elliptic curves. Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 65-71. http://geodesic.mathdoc.fr/item/DM_1996_8_1_a3/