The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent
Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 41-51
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\sigma =\sigma (1)\sigma (2)\ldots\sigma (n)$
be a permutation of the elements of the
set $1,2,\ldots,n$, and $D = \{k\colon \sigma ( k ) > \sigma ( k+ 1) \}$
be the descendent set of $\sigma$. Denote by $\des \sigma$
the cardinality of $D$ and set
\[
\maj \sigma = \sum_{k\in D} k,
\quad
\ides \sigma = \des \sigma^{-1},
\quad
\imaj \sigma = \maj \sigma^{-1} ,
\]
where $\sigma^{-1}$ is the inverse permutation to $\sigma$.
We show that the distribution of the four-dimensional
vector $R( n ) = (\des \sigma,\maj \sigma, \ides \sigma, \imaj \sigma)$ is asymptotically
normal as $n \to \infty$, and the two first coordinates of $R(n )$
are asymptotically independent from the two last ones.This work was supported by the Russian Foundation of Basic Research, Grant 93–011–1443.
@article{DM_1996_8_1_a1,
author = {V. A. Vatutin},
title = {The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent},
journal = {Diskretnaya Matematika},
pages = {41--51},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1996_8_1_a1/}
}
TY - JOUR AU - V. A. Vatutin TI - The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent JO - Diskretnaya Matematika PY - 1996 SP - 41 EP - 51 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1996_8_1_a1/ LA - ru ID - DM_1996_8_1_a1 ER -
V. A. Vatutin. The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent. Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 41-51. http://geodesic.mathdoc.fr/item/DM_1996_8_1_a1/