The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent
Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 41-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma =\sigma (1)\sigma (2)\ldots\sigma (n)$ be a permutation of the elements of the set $1,2,\ldots,n$, and $D = \{k\colon \sigma ( k ) > \sigma ( k+ 1) \}$ be the descendent set of $\sigma$. Denote by $\des \sigma$ the cardinality of $D$ and set \[ \maj \sigma = \sum_{k\in D} k, \quad \ides \sigma = \des \sigma^{-1}, \quad \imaj \sigma = \maj \sigma^{-1} , \] where $\sigma^{-1}$ is the inverse permutation to $\sigma$. We show that the distribution of the four-dimensional vector $R( n ) = (\des \sigma,\maj \sigma, \ides \sigma, \imaj \sigma)$ is asymptotically normal as $n \to \infty$, and the two first coordinates of $R(n )$ are asymptotically independent from the two last ones.This work was supported by the Russian Foundation of Basic Research, Grant 93–011–1443.
@article{DM_1996_8_1_a1,
     author = {V. A. Vatutin},
     title = {The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent},
     journal = {Diskretnaya Matematika},
     pages = {41--51},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_1_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
TI  - The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 41
EP  - 51
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_1_a1/
LA  - ru
ID  - DM_1996_8_1_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%T The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent
%J Diskretnaya Matematika
%D 1996
%P 41-51
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_1_a1/
%G ru
%F DM_1996_8_1_a1
V. A. Vatutin. The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent. Diskretnaya Matematika, Tome 8 (1996) no. 1, pp. 41-51. http://geodesic.mathdoc.fr/item/DM_1996_8_1_a1/