New inequality relations between depth and delay
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 77-85
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a sequence of minimal circuits $S_k$, $k=1,2,\ldots$,
such that the delay $T(S_k)$ is considerably less than the depth $D(S_k)$, namely
$$
T(S_k)\log_2D(S_k)+6.
$$
It is shown that this result cannot be essentially improved.This work is supported by Russian Foundation for Fundamental Investigations,
Grant 93–011–1525.
@article{DM_1995_7_4_a6,
author = {V. M. Khrapchenko},
title = {New inequality relations between depth and delay},
journal = {Diskretnaya Matematika},
pages = {77--85},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a6/}
}
V. M. Khrapchenko. New inequality relations between depth and delay. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 77-85. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a6/