New inequality relations between depth and delay
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 77-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a sequence of minimal circuits $S_k$, $k=1,2,\ldots$, such that the delay $T(S_k)$ is considerably less than the depth $D(S_k)$, namely $$ T(S_k)\log_2D(S_k)+6. $$ It is shown that this result cannot be essentially improved.This work is supported by Russian Foundation for Fundamental Investigations, Grant 93–011–1525.
@article{DM_1995_7_4_a6,
     author = {V. M. Khrapchenko},
     title = {New inequality relations between depth and delay},
     journal = {Diskretnaya Matematika},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a6/}
}
TY  - JOUR
AU  - V. M. Khrapchenko
TI  - New inequality relations between depth and delay
JO  - Diskretnaya Matematika
PY  - 1995
SP  - 77
EP  - 85
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1995_7_4_a6/
LA  - ru
ID  - DM_1995_7_4_a6
ER  - 
%0 Journal Article
%A V. M. Khrapchenko
%T New inequality relations between depth and delay
%J Diskretnaya Matematika
%D 1995
%P 77-85
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1995_7_4_a6/
%G ru
%F DM_1995_7_4_a6
V. M. Khrapchenko. New inequality relations between depth and delay. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 77-85. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a6/