Spectra of nonoriented de Bruijn graphs and an upper bound on the independence number for such graphs
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 140-144
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the unitary similarity transformation of the adjacency matrix, we obtain
a new upper bound for the independence number of the de Bruijn graph based on the spectrum
of the undirected de Bruijn graph. In the case of a $q$-ary graph of degree $n$
this bound is of the form
\[
\alpha (G_{n}) \le
(1 + \delta _{n})(1-{\pi ^{2}\over 2n^{2}}) {q^{n}\over 2},
\]
where $\delta _{n}\to 0$ as $n\to\infty $.
@article{DM_1995_7_4_a12,
author = {S. Yu. Mel'nikov},
title = {Spectra of nonoriented de {Bruijn} graphs and an upper bound on the independence number for such graphs},
journal = {Diskretnaya Matematika},
pages = {140--144},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a12/}
}
TY - JOUR AU - S. Yu. Mel'nikov TI - Spectra of nonoriented de Bruijn graphs and an upper bound on the independence number for such graphs JO - Diskretnaya Matematika PY - 1995 SP - 140 EP - 144 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1995_7_4_a12/ LA - ru ID - DM_1995_7_4_a12 ER -
S. Yu. Mel'nikov. Spectra of nonoriented de Bruijn graphs and an upper bound on the independence number for such graphs. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 140-144. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a12/