Upper bounds for cumulants of the sum of multi-indexed random variables
Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 33-47
Voir la notice de l'article provenant de la source Math-Net.Ru
For the $k$th semi-invariant $S_{k}(\xi )$ of the random variable
\[
\xi =\sum_{i\in V} \xi _{i},
\]
where $V$ is a subset of $\Z^{d}$, we obtain estimates of the form
\[
|S_{k}(\xi )|\le (k!)^{1+\gamma } \Delta ^{-(k-2)},\qquad k=3,4,\ldots
\]
Here $\gamma \ge 0$, $\Delta \ge 1$ are positive variables depending on the rate of
growth of the moments of the random variables $\xi _{i}$, $i\in V$, and on
their dependence properties. Combined with the results of
Lithuanian mathematicians [1], this result makes possible to prove both a normal limit
theorem on large deviations and an estimate for a tail of
the distribution of a generalized $U$-statistic.
@article{DM_1995_7_3_a3,
author = {A. B. Gorchakov},
title = {Upper bounds for cumulants of the sum of multi-indexed random variables},
journal = {Diskretnaya Matematika},
pages = {33--47},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1995_7_3_a3/}
}
A. B. Gorchakov. Upper bounds for cumulants of the sum of multi-indexed random variables. Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 33-47. http://geodesic.mathdoc.fr/item/DM_1995_7_3_a3/