Some estimates for the distribution of the height of a tree for digital searching
Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 8-18
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\varkappa (T)$ be the height of a $q$-ary search tree $T$
constructed by the keys $K_1, K_2,\ldots,K_n$ each of which is a vector
whose components belong to the alphabet $A=\{0,1,\ldots,q-1\}$.
Assuming that the
components of the vectors are independent and uniformly distributed on $A$,
we find upper and lower estimates for the probabilities
$\P\{\varkappa (t)\leq m\}$, $m=1,\ldots,n,$ with explicitly given constants.
For typical values of $m $ the estimates obtained are better than those
proved by Flajolet [2].
@article{DM_1995_7_3_a1,
author = {V. A. Vatutin and V. G. Mikhailov},
title = {Some estimates for the distribution of the height of a tree for digital searching},
journal = {Diskretnaya Matematika},
pages = {8--18},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1995_7_3_a1/}
}
TY - JOUR AU - V. A. Vatutin AU - V. G. Mikhailov TI - Some estimates for the distribution of the height of a tree for digital searching JO - Diskretnaya Matematika PY - 1995 SP - 8 EP - 18 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1995_7_3_a1/ LA - ru ID - DM_1995_7_3_a1 ER -
V. A. Vatutin; V. G. Mikhailov. Some estimates for the distribution of the height of a tree for digital searching. Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 8-18. http://geodesic.mathdoc.fr/item/DM_1995_7_3_a1/