The weight of an $n$-dimensional Boolean vector and addition modulo $2^n$; generalization to the case of modulo $m^n$
Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let elements $x$, $y$, $\gamma$ of the residue class $Z_{2^n}$ satisfy the relation $y=x\boxplus \gamma$, where $\boxplus$ is the sign of addition in $Z_{2^n}$. In binary notation the vectors $x$ and $y$ can be regarded as the Boolean vectors $x=(x_1,x_2,\ldots,x_n)$, $y=(y_1,y_2,\ldots,y_n)$ in $B^n$. W e suppose that $x$ is a random element with the uniform distribution on $Z_{2^n}$ and $\gamma$ is a constant. For any $\gamma$ we give the generating function of the two-dimensional distribution of the weights $\xi=|x|$ and $\eta=|y|$, where $|x|=x_1+x_2+\ldots+x_n$, $|y|=y_1+y_2+\ldots+y_n$. The generalization of this result to the case of modulo $m^n$ is also given.The work was supported by the Russian Foundation for Fundamental Researches, grant 93–011–1443.
@article{DM_1995_7_3_a0,
     author = {B. A. Sevast'yanov},
     title = {The weight of an $n$-dimensional {Boolean} vector and addition modulo $2^n$; generalization to the case of modulo $m^n$},
     journal = {Diskretnaya Matematika},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1995_7_3_a0/}
}
TY  - JOUR
AU  - B. A. Sevast'yanov
TI  - The weight of an $n$-dimensional Boolean vector and addition modulo $2^n$; generalization to the case of modulo $m^n$
JO  - Diskretnaya Matematika
PY  - 1995
SP  - 3
EP  - 7
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1995_7_3_a0/
LA  - ru
ID  - DM_1995_7_3_a0
ER  - 
%0 Journal Article
%A B. A. Sevast'yanov
%T The weight of an $n$-dimensional Boolean vector and addition modulo $2^n$; generalization to the case of modulo $m^n$
%J Diskretnaya Matematika
%D 1995
%P 3-7
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1995_7_3_a0/
%G ru
%F DM_1995_7_3_a0
B. A. Sevast'yanov. The weight of an $n$-dimensional Boolean vector and addition modulo $2^n$; generalization to the case of modulo $m^n$. Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 3-7. http://geodesic.mathdoc.fr/item/DM_1995_7_3_a0/