The weight of an $n$-dimensional Boolean vector and addition modulo $2^n$; generalization to the case of modulo $m^n$
Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 3-7
Voir la notice de l'article provenant de la source Math-Net.Ru
Let elements $x$, $y$, $\gamma$ of the residue class $Z_{2^n}$ satisfy
the relation
$y=x\boxplus \gamma$, where $\boxplus$ is the sign of addition in $Z_{2^n}$.
In binary notation the vectors
$x$ and $y$ can be regarded as the Boolean vectors $x=(x_1,x_2,\ldots,x_n)$,
$y=(y_1,y_2,\ldots,y_n)$ in $B^n$. W e suppose that $x$ is a random element
with the uniform distribution on $Z_{2^n}$ and $\gamma$ is a constant.
For any $\gamma$ we give the generating function of the two-dimensional
distribution of the weights
$\xi=|x|$ and $\eta=|y|$, where $|x|=x_1+x_2+\ldots+x_n$, $|y|=y_1+y_2+\ldots+y_n$.
The generalization of this result to the case of modulo $m^n$ is also given.The work was supported by the Russian Foundation for Fundamental Researches,
grant 93–011–1443.
@article{DM_1995_7_3_a0,
author = {B. A. Sevast'yanov},
title = {The weight of an $n$-dimensional {Boolean} vector and addition modulo $2^n$; generalization to the case of modulo $m^n$},
journal = {Diskretnaya Matematika},
pages = {3--7},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1995_7_3_a0/}
}
TY - JOUR AU - B. A. Sevast'yanov TI - The weight of an $n$-dimensional Boolean vector and addition modulo $2^n$; generalization to the case of modulo $m^n$ JO - Diskretnaya Matematika PY - 1995 SP - 3 EP - 7 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1995_7_3_a0/ LA - ru ID - DM_1995_7_3_a0 ER -
B. A. Sevast'yanov. The weight of an $n$-dimensional Boolean vector and addition modulo $2^n$; generalization to the case of modulo $m^n$. Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 3-7. http://geodesic.mathdoc.fr/item/DM_1995_7_3_a0/