Decomposition of Boolean functions into the sum of products of subfunctions
Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 102-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a theorem on the representation of Boolean functions in the polynomial form $$ f(x,y)=\sum_\sigma\sum_\tau\alpha_{\tau\sigma}f(\tau,y)f(x,\sigma), $$ where the Boolean summations are taken over all Boolean vectors $\sigma$ and $\tau$, $\alpha_{\tau\sigma}\in\{0,1\}$, $x$ and $y$ are collections of Boolean variables. We also give a method for finding the coefficients $\alpha_{\tau\sigma}$.
@article{DM_1993_5_3_a8,
     author = {S. F. Vinokurov and N. A. Peryazev},
     title = {Decomposition of {Boolean} functions into the sum of products of subfunctions},
     journal = {Diskretnaya Matematika},
     pages = {102--104},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1993_5_3_a8/}
}
TY  - JOUR
AU  - S. F. Vinokurov
AU  - N. A. Peryazev
TI  - Decomposition of Boolean functions into the sum of products of subfunctions
JO  - Diskretnaya Matematika
PY  - 1993
SP  - 102
EP  - 104
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1993_5_3_a8/
LA  - ru
ID  - DM_1993_5_3_a8
ER  - 
%0 Journal Article
%A S. F. Vinokurov
%A N. A. Peryazev
%T Decomposition of Boolean functions into the sum of products of subfunctions
%J Diskretnaya Matematika
%D 1993
%P 102-104
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1993_5_3_a8/
%G ru
%F DM_1993_5_3_a8
S. F. Vinokurov; N. A. Peryazev. Decomposition of Boolean functions into the sum of products of subfunctions. Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 102-104. http://geodesic.mathdoc.fr/item/DM_1993_5_3_a8/