Decomposition of Boolean functions into the sum of products of subfunctions
Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 102-104
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a theorem on the representation of Boolean functions in the polynomial form
$$
f(x,y)=\sum_\sigma\sum_\tau\alpha_{\tau\sigma}f(\tau,y)f(x,\sigma),
$$
where the Boolean summations are taken over all Boolean vectors $\sigma$ and $\tau$, $\alpha_{\tau\sigma}\in\{0,1\}$, $x$ and $y$ are collections of Boolean variables. We also give a method for finding the coefficients $\alpha_{\tau\sigma}$.
@article{DM_1993_5_3_a8,
author = {S. F. Vinokurov and N. A. Peryazev},
title = {Decomposition of {Boolean} functions into the sum of products of subfunctions},
journal = {Diskretnaya Matematika},
pages = {102--104},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1993_5_3_a8/}
}
TY - JOUR AU - S. F. Vinokurov AU - N. A. Peryazev TI - Decomposition of Boolean functions into the sum of products of subfunctions JO - Diskretnaya Matematika PY - 1993 SP - 102 EP - 104 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1993_5_3_a8/ LA - ru ID - DM_1993_5_3_a8 ER -
S. F. Vinokurov; N. A. Peryazev. Decomposition of Boolean functions into the sum of products of subfunctions. Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 102-104. http://geodesic.mathdoc.fr/item/DM_1993_5_3_a8/